Requi renents Engi neering for Software Reuse

Kevin L. MIlls
Novenber 23, 1992

| . Introduction

Reuse of software conponents energed as an industry goa
subsequent to a NATO conference in 1969 where Doug Mcllroy first
i ntroduced the concept. Over the two decades since, reuse
remai ned a topic of nuch discussion and sone research; and,
al t hough different views exist on the degree of success enjoyed
by software developers in today’s industry, nost students of the
state of software devel opnent practice agree that Mllroy’' s
original vision has yet to be achieved and that increased reuse
of software conponents is possible and remains a goal worth
pur sui ng.

The present paper attenpts to advance the cause of software
reuse by investigating two main ideas. First, how can advances
In requirements engineering be used to inprove software reuse?
Thi s paper proposes that a requirenments engineering process, and
supporting techniques and tools, can be used to generate the
dormai n knowl edge that is a necessary condition for successful
reuse. Further, this paper proposes that prototyping can be
used during requirenments engineering to evaluate the reusability
of know edge and conponents identified in earlier phases of the
requi renents engineering cycle. A secondary idea investigated
in this paper is the degree to which reusabl e software can
assi st in prototyping during the requirenments engi neering
process. For exanple, can we hope that reusable software

1

conponents will provide a basis for prototypi ng? These ideas
are presented nore fully in Section Ill, Requirenents
Engi neering for Reuse.

Bef ore considering the relationshi ps between requirenents
engi neering and reuse, sone discussion is needed regarding
reuse. Section I, Reuse: Problens, Practice, and Potential,
presents the necessary material. First, a context is
established by defining and limting, for purposes of this
paper, the scope of reuse. This includes an explanation of the
notivations behind reuse and a brief evaluation of the progress
achi eved over twenty years. Second, problens that deter reuse
are enuner ated under four categories: 1) technical, 2)
cognitive, 3) nmanagerial, and 4) economc. A brief description
of each problemis given. Third, sone specific exanples of
reuse practice during the past decade are identified and
descri bed. The exanples are taken from corporations, governnent
organi zations, and the mass, so-called "consunmer", market.
Fourth, some research ained at overcom ng probl ens associ at ed
wWith software reuse is reported. Section Il then closes with
sonme concl usi ons about reuse. The remai nder of the paper
I nvestigates the theses advanced in Section |11

Section |V, Domain Know edge Acqui sition and
Represent ati on, considers how requirenents engi neering
processes, and associ ated tools and techniques, for elicitation,
organi zation, and representation of know edge can support
software reuse. Specifically, know edge acquisition is explored
as a nethod to elicit reusable concepts from donmai n experts, and
know edge representation is exam ned as a neans to organi ze,
describe, and refine domain know edge. Section IV closes with
some concl usi ons regardi ng know edge acquisition and
representation

Section V, Prototyping and Reuse, explores possible |inks
bet ween prototyping and software reuse. The section begins with

2

an overvi ew of prototyping approaches (by aim by technical
approach, and by life-cycle nodel), and then describes sone
specific prototyping systens reported in the literature within
the last four years. The section closes with a discussion of
potential relationships between prototyping and software reuse.
A concl udi ng section (VI) provides a summary of the ideas
advanced in the paper. Reuse is key to productivity
i nprovenents in nost human endeavors. Software devel opnent is
no exception. Reuse of software has inproved over tine, but
greater potential for reuse appears feasible within the next
decade or two. This paper propounds a view that a requirenents
engi neering process, and related tools and techni ques, can
advance the state of software reuse.

Il. Reuse: Problens, Practice, and Potenti al

Al t hough software reuse is often considered to denote
cobbling together a programfroma set of software pieces or
i nking an application with a set of library subroutines, the
reality of reuse defies sinple description. As a working node
of software reuse, Prieto-Diaz defines two |evels: 1) ideas and
knowl edge and 2) artifacts and conponents. [PRIE87a] This is a
conveni ent di chot oy because whenever a programmer creates
software he is reusing know edge he al ready possesses. [CURT89]

On a |l arger scale, programm ng projects reuse a nmassive anount
of know edge, including software devel opment process know edge.
Thus, initiatives such as that of the Software Engi neering
Institute to docunent, refine, and pronote inproved software
devel opment processes are an exanple of reuse of ideas and
know edge to devel op software. Probably the nost productive
reuse of know edge to devel op software obtains today fromreuse
of trained software devel opnent personnel. [MEYE87]

O her exanpl es of know edge reuse for software devel opnent
abound. A huge commerci al narket exists for books descri bing
data structures and al gorithms, and for teaching about the
nature and application of those algorithns and data structures.
[STAN84] Anot her exanpl e of know edge reuse is adoption of and
adherence to technical standards and conventions. [RI CE89] Coing
even further toward tangi bl e know edge, buyi ng commerci al
software, including so-called 4Gs, can be viewed as reuse of
know edge and ideas. [BCEHB7] Brooks describes a burgeoni ng nass
mar ket for software prograns that are applicable to specific
t asks, and he proposes to:

equi p the conputer-naive intellectua
workers ... with personal conputers and good
witing, drawing, file, and spreadsheet

prograns and then [to] turn them | oose. The
sane strategy, carried out with generalized

4

mat hemati cal and statistical packages and

sonme sinple programm ng capabilities, wll

also work for ... laboratory scientists.

[BROOB7, p.16-17]
I ntroduction of comrercial software products blurs the |ine
bet ween know edge and artifacts. Since software artifacts and
conponent s enbody ideas and know edge, the reuse |evels
I ntroduced by Prieto-Di az perhaps have nore to do with
representation: know edge and i deas being intangible until they
are represented; once represented in human-readable form they
becone artifacts, and when they reach a nachi ne-executable form
t hey can be considered software conponents.

The key point of this discussion is that one needs to reuse
nore than code. (In fact, it is difficult to define reusable
conponents apart froma context; and a context can include the
requi renents, a specification, a systemarchitecture, another
program or software subsystem and a test plan and test cases.

[CALDO1]) Lenz considers the key reusabl e conponent to be a
specification that includes a functional overview, a progranmer
interface (syntax and informal senmantics), fornmal semantics, any
constraints or dependencies, a description of the rationale for
and characteristics of the design, and an exanpl e usage.

[LENZ87] From a single specification, Lenz envisions nany
potential inplenmentations. This viewis reinforced by others
who stress that the design and architecture are nore reusabl e
than code over the long-term [WRF90, HORO84, JONE84] Still, the
end goal is to produce an executabl e conputer programthat
satisfies a given set of requirenents; thus, reusable software
conponents, such as subroutine libraries, Ada packages, program
generators, code skeletons and tenpl ates, and reconfigurable
software systens, remain a necessary, tangi ble aspect of reuse.

For purposes of the present paper reuse is circunscribed
wi thin a bounds of nachi ne-processability; thus, reusable
conmponent s nust be both tangi bl e and conput er-processable. This

5

definition requires that problens associated with capturing and
representi ng know edge nust be addressed. The definition also
stipul ates that know edge and i deas represented solely in
human- accessible formare outside the circle of reuse drawn
within the present paper. So, for exanple, if a human-readabl e
design is captured and represented, then such design nust be
accessi bl e through a conputer-searchabl e i ndex, or such design
nmust identify one or nore inplenentations that can be

I ncorporated in, or that enbody, a conputer program This,
then, is software reuse: finding, accessing, evaluating, and
usi ng or adapting one or nore software conmponents to satisfy a
gi ven set of requirenents.

Successful reuse of software conponents |eads to increased
productivity anong software devel opers, to inproved quality in
the delivered products, and to nore cost-effective software
mai nt enance. [CAVA89] Such inprovenents could prove valuable to
organi zati ons that depend on conmputer software. Boehm esti mates
that by 1995 a 20% i nprovenent in software productivity will be
worth $90 billion worldw de. [BOEH87] And there is anple
evi dence to suspect that reuse can becone a nornal part of
sof tware devel opnent practice. For exanple, a study of business
software systens at Raytheon M ssile Systens Division found that
60% of all designs and code were redundant and coul d be reused.
[LANGB4] Another study of California conmercial banking and
i nsurance applications found that approximately 75% of the
software functions were comon to nore than one program and
concluded that |ess than 15% of the code witten for such
applications is unique, novel, or specific; the remaining 85%
appeared to be generic. [JONEB4] Further, when exam ning the
i mmense | eaps forward in conputer graphics nmade between 1954 and
1984, Standish found reasons to hope for equal progress in the
future in a nunber of applications. [STAN84] WMatsunoto al so

reported in 1984 that 50% of the |ines of code delivered in
products fromthe Toshi ba software factory were reused. [MATS84]

In that same year, Kernighan described the UN X operating
system as a set of reusable prograns that can be conposed via a
shell and pipes, coupled with a reusable set of operating system
services that could be accessed by prograns in a variety of
source | anguages through |inkable subroutine |ibraries. [KERN84]
In addition to the UNIX tools, Horowitz and Munson identified a
nunber of w dely used subroutine libraries for mathemati cal
functions and nunerical analysis, and described conpiler
generators, sinulation | anguages, and paraneterized software
systens as, then current, software reuse successes. [HORCB4]
Also in 1984, spreadsheets were declared software reuse
successes. [JONEB4] By 1985, sonme were claimng that a new
i ndustry was energing to support the design, devel opnment,

di stribution, and mai ntenance of reusable "Software-|Cs".
[LEDB85]

By 1987, advocates such as Biggerstaff saw software reuse
as a great promse unfulfilled. Biggerstaff’s experience was
that well under half of delivered systens could be conposed of
reused code. [BIG&E7] Internetrics, owners of a reusable
software library, reported that 33% of delivered code consi sted
of reused Ada packages. [BURT87] Prieto-Di az found that npst
reusabl e conponents were snall in nunber of |ines of code, were
sinple in structure, had excell ent docunentation, and were
witten in the sane software | anguage as the new software system
under devel opnent. [PRI E87]

Two years | ater, NASA projects were achieving software
reuse rates of only 32% That sane year Curtis reported that
sof tware devel opnent practitioners, depending on their
operational definition of reuse, had been reusing software for
years, had just started a prom sing reuse program or saw a need
to sponsor nmuch nore research on reuse. [CURT89]

Pai nfully sl ow progress was nmade on reusing software
bet ween 1984 and 1989. 1In 1984, studies predicted that 60-85%
of business software could be conposed from reusabl e conponents,
and sone enlightened conpanies were even achi eving 50% code
reuse. Yet, five years later, the best reported software reuse
rates were at about 33% By 1991, software reuse practice was
seen to be at a stage of awakening, noving slowy toward a
period of early use. [CALD91] Wy has progress been so sl ow?

Successful reuse of software requires overconmng a |ong
list of hard problens. Meyer discusses software reuse probl ens
in terns of technical issues, econom c incentives, and
programer reluctance. [MEYE87] In Meyer’s opinion the main
roadbl ocks to successful reuse are technical. Wthout
eval uati ng Meyer’s opinion, inmmed ate evidence supporting his
view can be drawn fromthe follow ng di scussion because the |i st
of technical problens inpeding software reuse is double that for
any ot her category; however, the relative significance of each
particular problemis difficult to evaluate. The present paper
classifies reuse problenms in four categories: 1) technical, 2)
cognitive, 3) nanagenent, and 4) econonmic. The description
begins with the technical problens.

The reuse popul ati on probl em conprises the current dearth
of reusabl e conponents. Obtaining qualified candi dates for
reuse is difficult, and adapting submtted code to a reusable
formis expensive. [CAVA89] Software is not often designed for
reuse, and even when software is so designed, witing reusable
software is difficult. [RAMAB6, MEYE87] Code can be too
speci ali zed and often includes too many representati onal
details. [STAN84] For exanple, Biggerstaff points out that:

[M odul es becone less ... reusable the nore
specific they beconme because it is nore ...
difficult to find an exact match of detail ed
specifics. Mdules subtlely encode ...

specific information about a variety of
things: operating system run-tine library,

8

har dwar e equi pnent, ... data packagi ng,

i nterface packaging, and so forth. [BI G387,

p. 43]
And yet, separating a reusable software conponent from a
specific context is difficult. [CALDI91]

Anot her reason for the paucity of reusable conponents is a
| ack of producers. Mst software devel opment is conducted on a
project basis; but projects will never be an appropriate place
to create reusable software. Projects are hindered by a
deadl i ne focus, |ack wi de domain knowl edge, and |l ack a reuse
perspective. [CALD91] Production of reusable conponents is al so
i nhibited by | ack of accepted franeworks or system architectures
i nto which conponents can be integrated. [WRF90] Anot her
factor working against the supply for reusable software is |ack
of demand; "too few software devel opers value or appreciate a
quality library...." [CGRIS91, p. 264]

A large supply of reusable conmponents woul d not be a
panacea, additional issues would elevate in significance. One
such issue is the classification problem By what attributes
shoul d reusabl e conponents be described and classified to enable
effective search and retrieval by potential users? Several
approaches have been proposed [BUTR87, PRI E87, CAVA89] None of
t hese schenes appears particularly effective, and none seem
necessarily superior to the others. Defining an approach that
enabl es di scrimnation between very simlar conponents is a
particularly difficult classification problem [PRIE87]

Assum ng that software conmponents can be adequately
classified, the /ocation and retrieval problemmnust be
addressed. How can potentially appropriate reusabl e candi dates
be | ocated and retrieved? The search space could be i mense.
Some neans of factoring out specificity is required, so that the
search space can be narrowed. [BIGE7] |If specificity is
factored out, then a neans of napping between a specification
and appropriate inplenentations is needed. [BIGE87] Helping a

9

programer retrieve a group of possible reuse candidates is
achi evabl e, but allowi ng a programmer to find the cl osest natch
agai nst his stated requirenents is much harder. [RAMA86] No
matter what approaches are used, reuse libraries nust be

organi zed for quick search and access. [CURT89]

Wth a candi date set of reusable conponents in hand, the
eval uati on probl em nmust be solved. There are two facets to this
problem how close to the requirenents does each candi date match
and how easily reusable is each candidate? There are sone
proposal s for solving these problens [BURT87, PRI E87]. Reuser
experience is significant because programmers will need to
determne if reuse wll require nore work in a given situation
than woul d a new i npl enentation. [RAMA86] None of the existing
proposal s appears particularly effective, although one of them
[PRIEB7] attenpts to vary the evaluation depending on a reuse
experience profile for the programmers conducting the
eval uati on.

The significance of reuse experience anong programmers was
I nvestigated in a study by Wodfield. [WOOD87] In the study, 51
devel opers (25 fromindustry and 26 froma university) were
gi ven 21 software conponents and asked to determne if each
conponent could be reused to satisfy a particular specification.
The study resulted in four findings. First, programers
untrained in reuse could not evaluate the ability of a reuse
candidate to satisfy inplenentation criteria. Second,
programmers untrained in reuse are influenced by sone issues
that are uninportant and are not influenced by sone issues that
are inportant. Third, no groups of programmers could be
identified as performng significantly better or worse in
judging reusability. Finally, if a progranmer judged that the
wor k needed to reuse code was |ess than 70% of the effort
required to build the code fromscratch, then the conponent was
chosen for reuse.

10

Havi ng successfully sel ected a reusabl e conponent,
programmers typically nust overcone the adaptation problem A
programer nust understand a conponent in order to nodify it.

[CURT89] Depending on the match between the programrer’s
specification and the reuse conponent, the software m ght
require conversion for a different operating system or
progranm ng | anguage or hardware environnment. The interfaces
avai l abl e to the conponent m ght not match the interfaces
expect ed. [NOVA92]

When required to adapt reusable code, the tendency anong
programmers is to copy and nodify. [CAVA89] To avoid copying, a
nunber of problens nust be solved. For exanple, who owns and is
responsi bl e for the reusabl e conponent? How are the conponents
mai nt ai ned and synchroni zed with the rel ease of products that
I ncorporate the conponents? [LENZ87] How can reusabl e code be
kept available in a formthat works on nultiple conputing
pl atforns? [CAVA89]

Sel by investigated reuse at the National Aeronautics and
Space Admi nistration (NASA), exam ning 25 software systens
ranging in size from3,000 to 112,000 Iines of code, and found
adaptation to be an inportant factor affecting reuse. [SELB89]
He conpared new y devel oped nodules to two cl asses of reused
nodul es: extensively revised and slightly revised. He found
t hat nodul es reused wi thout revision had: 1) fewer calls to
ot her nodul es per line of code, 2) sinpler interfaces, 3) |ess
i nteraction with human users, and 4) higher ratios of comments
to lines of code. Conpletely reused nodules were generally
smal ler, required | ess devel opnent effort, required fewer
versions during devel opnment, and had nore assi gnnent statenents.

Sel by’ s investigation introduces the granularity problem
identified by Biggerstaff. [BIGE87] Smaller, sinpler conponents
tend to be reused nore because the population is |arge and
eval uati on and adaptati on are easy, though finding snaller

11

conponents can be hard and the payoff is usually |Iow. Larger
conponents tend to be reused | ess often because the popul ation
is low and eval uati on and adaptation are hard, though finding
such conmponents is easy and the payoff can be high. |In general,
smal | reusabl e conponents are | ess desirable. [LENZ87, W RF90]

Granul arity of reusable conmponents influences the
conposi tion problem To be successful, reuse schenes nust
provide "...robust nechanisns to insure reliable and neani ngf ul
parts conmposition.” [RICE89, p. 125] Two different approaches
exi st to solve the conposition problem One approach relies on
standards for conmuni cation and data interchange. [JONE84] 1In
this nodel, reusabl e conponents, which are assuned to be fairly
| arge, are connected together via comrunication channels, and
data i s exchanged between the conponents in a standard fornmat.
The second approach relies on a standard architecture into which
conponents can be |inked using a range of different nechanisns.

[WRF90, JONE84] The UNI X nodel for conposition is a hybrid of
t hese approaches. [KERN34]

Two ot her technical issues nerit discussion: the
docunent ati on and representation probl emand the requirenments
speci fication problem The docunentation requirenents for
reusabl e conponents are at |east as rigorous as for any other
software, probably nore rigorous. The docunentation nust
facilitate the understanding required to aid in the eval uation
and adaptati on of conmponents; for |arge reusable conponents this
Is critically inmportant and also very difficult. Mintenance is
70% 90% of the software life-cycle, and understanding is 50% 90%
of the mai ntenance problem [STAN84] Docunentation nust include
a specification, a design, a design rationale, constraints on
reusi ng the conponent, and test cases. [CALD91] How should this
i nformati on be represented?

The final technical issue addressed here is the
requi renents specification problem 1f the reader is not yet

12

hunbl ed by the scope and depth of technical barriers facing
software reuse and thinks that these will in due course be
overcone, then consider the trigger for software reuse: user
requi renents statenents. Users nmay express their requirenents
in a formthat can disguise cues that m ght otherw se trigger
recognition of appropriate reuse. [CURT89] Meyer was right, the
technical barriers to reuse are indeed high; but there exist

ot her inpedinents as well.

The programmer acceptance problemis well-known. [MEYE87,
CURT89, SAGE90] Experienced programmers tend to view their work
as creative, and they interpret reuse as routine application of
old technol ogy. Progranmmers al so possess a certain pride of
aut horshi p and believe that they can do the job better than
others. Programers tend to distrust software devel oped by
t hose they do not know. Also, the work required to understand
the code of others, is not normally viewed by programmers as
interesting. Programmers tend to believe that they will not get
credit for work that incorporates |arge anounts of reusable
code.

The novice programrmer problemis a special cognitive issue.
[CURT89] The short-term nmenory of humans can handl e about
seven, plus or mnus two, concepts at a tinme. To overcone this
probl em progranmers chunk conpl ex concepts together under
| abel s, and then the m nd can process seven | abels. The | abels
refer to information stored in hierarchical, semantic networks
in a progranmer’s long-termnenory. Expert programers are
better at encoding new i nformati on and at mappi ng, conpari ng,
and anal yzing the information agai nst the broad base of
know edge that they already possess. This means that novice
programmers, who can benefit the nost fromreusabl e software,
are not adept at identifying, analyzing, and eval uating
candi dates for reuse.

13

Anot her cognitive difficulty is the force-fit problem
[CURT89] Programrers will often try to force the application
requirenents to fit a structure or pattern for which they know a
solution, even if the solution fails to satisfy sonme of the
original specifications. A related issue is the generalization
problem [MEYE87, CURT89] Abstracting general concepts out of
specific inplenentations to forma reusable concept is a
difficult nental exercise. Such generalization is often
requi red because solutions that a programrer knows for one
application domain mght not transfer easily to another.

O course, managers also play a role in software reuse, and
unfortunately, reuse often suffers froma managenent conm tnent
problem Building a |library of reusabl e conponents takes tine
and costs noney. Managers can seldomidentify the potential for
a good return on the required investnent. Even when managers
are inclined to establish a program and to evaluate the results
as tinme goes by, the neasurenent probleminterferes. [CAVA89]
What are the neasures that will denonstrate increased
productivity and i nproved quality? |f measures can be defined,
how wi Il the required data be obtained? How can return on
i nvestment by accurately determ ned?

The return-on-investnent problemis one of the economc
I ssues i npeding software reuse. |If a conpany delivers software
that is too general and too reusable, then nmanagenent nmay fear
that they will not get the usual followon business of
mai nt enance and enhancenents. [MEYE87] |Individual progranmers
or small conpanies that could specialize in reusable conponents
of a limted scope and size have no sure neans of collecting for
their efforts because their code can be easily copied and
di stributed across conmmunications |inks. [COX92] This could be
called the intellectual property protection problem In
addition, purveyors of small, reusable conponents face a

14

mar keting problem How can you sell a reusable stack, for
exanpl e? [COX92]

Despite this host of difficult problens, software reuse is
practiced to varying degrees in both industry and governnent.
In the foll owi ng paragraphs sone instances of reuse practice
bet ween 1984 and 1992 are identified and described, begi nning
Wi th reuse in the business systens donmain at Raytheon Mssile
Systens Division, circa 1984.

Langergan and Grasso [LANG34] report on a reuse program at
Rayt heon that resulted in average code reuse rates of 60% The
approach to reuse taken at Raytheon began wi th anal ysis of
exi sting application code. Langergan and Grasso identified six
maj or functions in business applications, and, after analyzing
those functions, discerned seven program|ogic structures. From
this analysis they defined two types of reusable conponents:
functional nodules and program | ogic structures. A prelimnary
anal ysis of the COBOL prograns at Raytheon uncovered 3200
functional nodul es that support fifty applications. Since the
initial analysis revealed a great potential for reuse, the
I nvestigators were given support to anal yze over 5000 prograns.
The prograns were anal yzed by progranmm ng supervisors and were
classified against a set of criteria provided by Langergan and
G asso. This initial classification identified 1,089 edit
prograns, 1,099 update prograns, 2,433 report prograns, 247
extract prograns, 245 conversion prograns, and 161 data fix
prograns, for a total of 5,274. After generalization by
Langergan and G asso, the prograns were reclassified as 1,581
edits, 1,260 updates, and 2,433 reports. For each nodul e the
average |lines of code, by type, was: 1) edit, 626, 2) update
798, and 3) report, 507.

Qut of the 5,274 prograns initially analyzed, progranm ng
supervi sors selected 50 for detailed study. The study reveal ed
t hat 40-60% of the code was redundant and coul d be standardi zed.

15

The investigators then forned three prototype COBOL program
| ogi c structures and began to practice code reuse. Initial
results found reuse rates between 15% and 85% \Wen the paper
was published in 1984, over 5500 |ogic structures had been
devel oped, and average reuse rates were 60% These appear to
be the best software reuse results ever reported in the
literature

At about the sane tinme that Langergan and G asso were
I nvestigating and inplenenting reuse in the United States,
Mat sunot o was al so pursuing reuse at a Toshi ba software factory
i n Japan. [MATS84] WMatsunoto, approaching reuse in a nore
t heoretical fashion than Langergan and Grasso, defined three
| evel s of abstraction: specification, design, and code. Reuse
at Toshiba was facilitated by providing traceability between
these levels. A nethod of presentation, called Forns, was
defined for each level. Form(l, Q) denotes the specification,
and includes the objects, relationships, control algorithnmns,
i nput/out put transformations, constraints, and givens associ at ed
with the problem A Forn(1, Q) description renmains under strict
change control. A Form(3,Q) presentation is a generic
i npl ementation of a solution. Form(1, Q) descriptions are
stored in a searchable library which provides links to
appropriate Form(3, Q) code segnents in a comnputer-aided
sof tware engi neering (CASE) system \Wen devel opi hg new
software, designers are required to conplete a representation
called Form(1l,P) which is used to search the repository for a
mat ch. Shoul d an appropriate, matching Form(1, Q) be |ocated,
the designer is required to follow the links to the associ ated
Form(3, Q) and then to generate code fromthe given skel eton.
Usi ng this approach, Toshi ba achieved a reuse rate of 50% of the
lines of code in delivered products.

A third approach to software reuse extant in 1984 was the
UNI X operating system [KERN84] The UN X operating system

16

advocates a software devel opnent style where nany small, genera
pur pose prograns are constructed and then |inked together in
novel ways through conposition operations (shell and pipes). To
facilitate the construction of the small progranms, UN X incl udes
a nunber of software libraries that provide access to operating
system services. Over the eight years since 1984, the UN X
nodel has proven surprisingly durable. Mny of the conputers
delivered today to industry and governnent require support for
the UNI X operating system in fact, the U S. Governnent has
defined a Federal standard, POSI X, based on the UN X system

By 1987, IBM apparently decided that reusable software
m ght have nerit, and began to inplenent reusable building
bl ocks. [LENZ87] The aim of such building blocks was to
encapsul ate functionality, to present well-defined interfaces,
and to achi eve zero-defect quality. Each building block is
represented by a single, detailed specification that could point
to potentially many inplenentations. (I1BMhas a rather |arge and
vari ed product line.) Athough IBMstarted out to build link
libraries this approach was soon abandoned in favor of
macr o- based, code tenplates. The link library approach had a
nunber of flaws: 1) procedure call overhead was too great, 2)
paraneters were too generic and had to be repeated, and 3)
conpil ers could provide no support for correctness checking in
the user’s program The results reported in 1987 were
surprisingly nodest. Only sixteen abstract data types, four
procedural building blocks, and three functional building bl ocks
had been created. Two inplenentations existed for sone of the
speci fications. The conponent sizes ranged from 100 to 3000
lines of code, with 1000 being the average size. Two |essons
were reported fromthis approach: 1) a clear understandi ng of
the application domain is required to build reusable software
and 2) fewer, |arger conponents are easier to nmanage than a
| arge number of small units.

17

Anot her reuse project reported in 1987 was conducted by
Internmetrics. [BURT87] The Internetrics reusable software
library (RSL) relied mainly on Ada, although conponents in other
| anguages were al so accepted. Each reusabl e conponent was
characterized according to 14 attributes, sonme of which were
automatically validated by a supporting RSL database (RSLDB).
Some of the attributes could only be verified by a human quality
assurance expert. The attributes were screened careful ly
because the resulting informati on was used by a program call ed
SCORE to assist users in retrieving conponents that m ght match
specific requirenents. Again, the reported results were
somewhat di sappoi nting when conpared with the successes reported
in 1984. Only 33% of delivered code consisted of reused Ada
packages. Several of the delivered products showed poor
performance until perfornmance anal yzers were used to profile the
code, follow ng which the code was tailored for the new
application. Three | essons were reported by Burton: 1)
standards are needed to define reuse attributes and netrics, 2)
automated tools require a thorough understandi ng of the
application donmain in order to effectively evaluate the reuse
potential of particular conponents, and 3) the value of a
reusabl e library increases when integrated with supporting
aut omat ed tool s.

In 1989, Cavaliere reported on a software reuse project
started at the Hartford I nsurance Group in 1981. [CAVA89] The
approach at the Hartford was simlar to that of Langergan and
Grasso. COBOL program skel etons, |ogic skel etons, and common
functi onal nodul es were defined and created, although code
generators were also used -- primarily for term nal screens and
report formats. The innovations in the Hartford approach were
mai nly in areas of managenent. For exanple, a Reusabl e Code
Revi ew Board was established to accept, review, evaluate, and
refine suggestions for reusable code, to identify and pilot new

18

reuse needs, and to conduct denonstrations and handl e questi ons.
One nenber of the board came from each application progranm ng
division at the Hartford. Each devel oper of new software was
asked to submit information regarding the potential reusability
of the new code, and managenent initiated an incentive program
to give cash awards and recognition for reusabl e code
subm ssions. Further, nanagenent invested in training prograns
and bulletin boards and established a reuse resource center that
was manned 24 hours a day (programmers work at all hours) to
hel p sol ve probl ens and answer questions. Cavaliere nade the
foll owi ng recommendati ons to organi zati ons consi dering a reuse
program 1) use 4G.s as nmuch as possible, 2) devel op and
mai ntai n an automated i ndex of existing prograns and functions,
3) provide full-time resources to start and support the program
4) provide resources to assess changes in productivity and
quality, and 5) setup a reusability users group

By 1991, even the Departnent of Defense had established a
software reuse repository. [DI SA91] The Defense Infornmation
Systens Agency (DI SA) provides government users and gover nnment
contractors with dialup access to a database of reusable
sof tware conponents. The database can be searched with keys,
assigned specific weights by the searcher, that guide access
t hrough an ten-facet classification schenme (conponent type,
function, object, |anguage, algorithm data representation, unit
type, certification level, environnment, and originator). The
repository can hold information on anything from functional
specifications to code, and | anguages range from 2167 (a DOD
specification standard) to COBOL. Apparently, each conponent is
self-classified by the submtter, and some conponents are
controlled by commercial |icenses. The repository also
mai ntains a set of metrics for each conponent neant to
characterize reusability, maintainability, reliability, and

19

portability. Information is included describing known uses of
each conmponent, as well as known probl ens.

Whil e the DOD appears to be a | ateconer to software reuse,
even such a successful conputer and instrunment conpany as
Hewl ett-Packard (HP) only initiated a Corporate Engi neering
Sof tware Reuse programin Cctober of 1990. [GRI S91] The program
appears to have achieved little as of October 1991. Sone HP
di vi sions have started a nulti-divisional domain analysis ained
at defining conmon architectures, conponents, and libraries for
firmvare in instruments and for chem cal and nedica
applications. One goal is to produce franeworks and maj or
conponents that can be reused across several product lines. A
second goal is to develop a reuse education curriculum Reuse
at HP is envisioned to be independent of any specific
programm ng | anguage, but object-oriented analysis (OOA) and
design (OOD) will probably be the basis for nost of the donain
anal yses conducted in support of HP reuse objectives.

Looki ng beyond HP, a cursory review of trade magazi nes and
the desks in hones and offices across the country reveals a
| arge market for reusable software prograns that run on
particul ar conputer architectures and under control of sone
specific operating systenms. The mass nmarket for reusable
sof tware provi des applications such as spreadsheets, graphical
user interfaces, comunications prograns, wordprocessors,
dat abases, math programnms, conputer-aided design, and nore. The
mar ket value of this software indicates an i mense reuse
success, a success built on de facto standards for hardware and
operating systenms. Techniques are now reachi ng the market pl ace
to enabl e these various applications to be conposed in ways not
originally intended by the application progranmer. Sone
skeptics do not believe that a commercial mass narket can
achi eve acceptable | evels of reuse over the long-term For
exanpl e, Adel e Gol dberg believes:

20

... reusabl e, conbi nabl e applications,
[t]oday we see this idea being pronoted at
the | evel of operating systens, w ndow
systens, and i ndependent software
architectures (low1level such as Mcrosoft’s
DLL and Sun’s sharable libraries, and

hi gh-1 evel such as Patriot Partners’
Constel l ation project and ParcPl ace’ s obj ect
nodel and framewor ks approach). A public
market is a very | oosely organized
environnent...even wel | -desi gned conponents
with mnimally constrained interfaces wll
have trouble attracting a critical nass of
custoners. On the other hand, within a

si ngl e organi zati on, reusabl e conponents can
be devel oped and redesigned with a context
that can span a large fraction of their

I ntended uses. In this way accunul ati on of
reusabl e code can becone an i nportant

busi ness asset, and can be treated as an

i nvestment and a capital good, rather than
sinply a cost. [GRIS91, p. 268]

Thi s tension between nmass-market, reusable software and

cust om devel oped, reusable software will continue for at |east a
decade. The buy or build decisions facing managers in |arge
corporations and governnent organi zati ons coul d have unforeseen
effects on ideas about software reuse. |In the neantine,
software reuse, as originally envisioned by Mllroy, continues
to advance in both industry and governnent.

Software reuse, as currently practiced, can be inproved,
and sone of the problens described earlier nmay be overcone as
the result of research ainmed at establishing a foundation for
software reuse. Two approaches to identifying reusable
conponents are being explored: domain analysis and software
re-manufacturing. Domain analysis is a front-end activity
anal ogous to elicitation, organization, and analysis in the
requi renents engi neering process. (See, for exanple, the work of
Prieto-Diaz. [PRIE87a]) Since donmin analysis forns an integral
part of the proposals advanced |later in this paper, a discussion
of the topic will be deferred until then. Software

21

re- manuf acturi ng, however, falls beyond the scope of the
proposal s made in the present paper, and is, therefore,
considered here in the presentation of background materi al
relating to reuse.
Cal di era and Basili have advanced specific proposals for

re- manuf acturing reusabl e software from exi sting code. [CALD91]
Thi s i dea appears attractive because sone of the nost
successful reuse projects reported in the literature started
W th existing COBOL code. The novel aspects of the proposals
fromCaldiera and Basili are three: 1) reuse is addressed

i ndependent of a specific domain, 2) software netrics are used
to help identify reusabl e conponents, and 3) an autonated
system CARE, extracts reusabl e conponents from existing code.
Their current inplenentation supports analysis of ANSI C and
Ada, and they have built a conponent extractor for C prograns.
A description of the systemis given in Figure Il-1 bel ow

Figurell-1. CARE, areusable software components extraction system. [CALD91, p.76]

COMPONENT COMPONENT
IDENTIFER QUALIFIER
MODEL SPECIFIER
EDITOR
TESTER
COMPONENT
EXTRACTOR CLASSIFIER

A

METRICS MODELS COMPONENTS
LIBRARY LIBRARY REPOSITORY
Caldiera and Basili intend that their tools support a

reusabl e software factory operating in a life-cycle independent
fromthat of specific projects. |In their nodel, software
projects build applications and reuse conponents, while the
factory handl es requests for reusable parts and builds, or

22

extracts, and packages reusabl e conponents. Although their
extraction tools operate wthout specific domain know edge,
Cal diera and Basili point out that workers in a reusable

software factory nust have intimte know edge of the domain.

Notice in Figure Il-1 the tool called a classifier. This
part of CARE, intended to assist in the problem of
classification of reusable conmponents, is not yet designed. In
fact, classification of conponents is another area of research
surroundi ng reuse. Prieto-Di az and Freeman have proposed "...a
faceted classification schenme, based on reusability-rel ated
attributes, and a selection nmechanism" [PRIE87] The goal of
their research was to aid progranmers to distinguish between
very simlar reusable conponents. Their approach integrates a
classification schenme with automated tools to hel p search for
reuse candi dates and to help evaluate the nodification effort
required to reuse candi date conponents. They criticize the
exi sting, enunerative schenmes (circa 1987) as vague, or as
excl udi ng consideration of reuse attributes, focusing instead on
application and hardware type. They al so denonstrate that
faceted classification schenmes are nore easily expanded than the
enunerati ve approaches (e.g., the Dewey Deci mal System). Their
approach appears to be inplenented by the DOD software
repository described earlier, except that their ideas about
i ncluding a reuser experience profile have not been inpl enented,
probably because the DOD repository is nmeant to serve a |arge,
al nost public, audience. Despite the best efforts of
Prieto-Di az, Freeman, and others, the classification problem
remai ns a research issue, and the problemcontinues to limt the
potential of software reuse.

Anot her area of research involves techniques for
constructing prograns fromreusabl e know edge or fromreusabl e
conmponents. Approaches to generation of prograns fromreusable
know edge are either: 1) automatic generation froma

23

user-witten specification [e.g., BARS85] or 2) autonated

assi stance for a human programmer [e.g., RICH88]. The automatic
generati on approach appears to require substantial know edge of
a fairly narrow domain. The autonmated assi stant approach
appears to depend on deep know edge at many |levels, as well as
sonme integration between the |evels of know edge. 1n general,
automati c progranm ng systens do not handle well certain aspects
of software requirenents that are inportant and visible to the
user, for exanple, the details of the user interface or the
nyriad, specific exception conditions that can occur. Anot her
facet of software devel opnent that autonated program ng systens
nmust address is the iterative nature of the process.

Devel opnent usually noves from vague concepts toward a software
solution in iterative cycles that get closer and closer to an
acceptabl e solution. [RICH88a] "Automatic progranmm ng systens
will have to explain what they have done and why." [RI CH38a,
p.43] Early automatic progranmm ng systens have not handl ed this
interaction and iteration particularly well. One reason for
failing in the area of user interaction is that automatic
progranmm ng systens traditionally depend upon specific | anguages
that are not easy for users to understand.

An alternative to automatic progranmm ng i s conposition of a
software system fromreusabl e conponents. In the past, this
approach was limted by the problens inherent in link |ibraries:
too many conponents that are too snmall, inconpatible interfaces
anong conponents, inability to detect errors at conpile tineg,
and limted functionality anong available libraries. Research
into object oriented techniques may overcone sone of the
limtations of link |ibraries. [WRF90] A recent study found
that use of an object oriented paradi gminproves software
devel opnment productivity, and that a significant part of the
i nprovenent was due to reuse. [LEW91] The object oriented
nodel encapsul ates groups of functions and attributes into a

24

software unit, typically called a class, that is neant to be
reused to inplenment a concept. This approach is seen as
superior to the link |library approach because a class provides a
| ogi cal grouping of functions that can help programers better
understand the rel ati onshi ps between functions and attri butes.
Interestingly, the | atest research on object oriented techni ques
describes the class as being too fine-grained. [W RF90]

I nstead, researchers are working to define franmeworks, or
ensenbl es, that group classes into bigger units and then
concentrate on defining the interfaces between the groupings.
The seed for this idea probably grew out of the devel opnent of
graphic user interfaces (GJs) which were inplenented as a

rel ated set of object classes.

An exanpl e of object oriented franmeworks outside the domain
of GQUIs is Choices, an operating systemfranework witten in
C++. Choices includes an interlocking set of franmeworks for
file systens, virtual nmenory, conmunications, and process
scheduling. The frameworks can be instantiated as a Berkel ey
UNI X, System V UNI X, or MSDOS system Experience with Choices
provi des sone interesting insight into the potential for and
limtations of object oriented approaches to software reuse.

The Choices file system has gone through
many versions, and each version is nore
general and reusabl e than the previous one.
The core cl asses have been stable for sone
time, while the outer classes are newer and
still changing. This is typical of reusable
designs. Reusing the early versions points
out design weaknesses that nust be
corrected. A framework’s designer can be
confident of its reusability only after it
has been successfully reused several tines.
Designing a framework is itself research

The designer nust understand the possible
desi gn deci sions and nust organize themin a
set of classes related by the client/server,
whol e/ part, subcl ass/ supercl ass

rel ati onships. Thus, the designer is
devel oping a theory of the problem domain

25

and expressing it with object oriented

design. [WRF90, p. 118]
The early research on object franeworks has identified the need
for automated tools that can configure applications froma
framewor k and that can conpose applications froma set of
configured franmeworks. Sonme approaches being investigated
I nclude scripting | anguages and vi sual scripting tools.
Adequat e support for conposition tools will probably require
know edge- based systens such as those envisioned by R ch and
Waters. [RI CH88a]

Rich and Waters advocate a hybrid approach to software
devel opment from reusabl e conponents. They envi sion an aut onat ed
assistant that will help the human programrer (user or
prof essi onal) synthesize a software sol ution by inspecting
various chunks of knowledge (called clichés) and by selecting a
set that can be integrated to satisfy a given set of
requirements. Their approach requires that an automated
assistant possess knowledge of application domain clichés and
programming clichés. In effect, domain knowledge and
programming knowledge would be used by an expert system to help
a programmer assemble a solution from reusable parts.

What, then, can be concluded about software reuse? Reuse
success stories possess some common traits: 1) the application
domain is well-understood, 2) components tend to be large, and
3) a definite system model or architecture exists into which
components can be fitted. Knowledge of both the application
domain and of programming technology is necessary for successful
software reuse. As a corollary, knowledge, while necessary for
software development through reuse, is not a sufficient
condition; the knowledge must be represented in a form from
which programs can be generated or composed. This indicates
that knowledge-based systems (KBS) will play an essential role
in successful software reuse in the future. KBS can perhaps

26

assist wth the evaluation and adaptation probl ens by aiding the
programmer to match requirenments to avail abl e software
solutions, or conmponents, and by hel pi ng adapt existing
sol utions and conponents to specific requirenments. KBS should
al so aneliorate the force-fit and novi ce programrer probl ens by
interacting in an iterative cycle with the programrer to
identify the best solutions for particular requirenents.

Al t hough the classification probl emseens unsol vabl e,
vi ew ng resuabl e conponents in |arger chunks prom ses to change
the nature of the problem Wen dealing in |arger conponents,
classification seens nore likely to focus on significant
concepts in the problem domain. Current classification schenes
focus too nuch on solution spaces (e.g., environnent
constraints, representation form data structues, and
algorithns). Creating fewer, larger, reusable conmponents shoul d
also limt the effects of the /ocation and retrieval problens.

Finally, the requirenent for a specific systemarchitecture
or framework to support software reuse suggests that prototyping
systens and standard hardware and software platforns can play a
significant role in devel oping systens fromreusabl e software.
Prot ot ypi ng systens m ght establish an architecture into which
reusabl e conponents can be fitted and eval uat ed.

Over the nore than two decades since Mcllroy first
i ntroduced the prospect of a reusable software conponents
i ndustry, significant trends in | ower-cost, higher-perfornmance
har dwar e have increased demand for software. The software
del i vered today enbodies richer functionality than was feasible
in 1969. Even with these changes, the apex of software reuse
seens to have occurred in 1984, when at |east two practitioners
reported a 50%reuse rate in two different application donains.
Advances in software | anguages and technol ogy seened to wash
away these gains so that by 1987 the reuse rate anong typi cal
software projects had dropped to 33% Notably, reuse in the

27

1987 to 1989 period appears to have relied on smaller, sinpler
functi onal nodul es, the concept of reusable program|ogic and
control structures seens to have vani shed. The newest efforts
begi nning in 1990 appear destined to depend on object oriented
progranm ng as the key to reusable software. Yet, object
ori ented approaches are already being called into questions by
sonme researchers because cl asses, even though they can
encapsul ate many functions and attri butes, define reusable
conponents that are too small. Although progress on software
reuse appears to be noving in reverse, sonetinmes backward
novenent precedes substantial progress.

Thi s paper argues that the problens plaguing software reuse
are well known, that software reuse during the m d-1980"s
reveal ed sone essential requirenents for success, and that
ener gi ng processes for requirenents engi neering, and associ at ed
tool s and techni ques, can be applied to boost software
productivity and quality by facilitating increases in reuse of
sof t war e.

28

[11. Requirenents Engineering for Reuse

As experience was gained with software reuse, researchers
came to understand that intinmate know edge of an application
domain is a necessary prerequisite to identifying, defining, and
speci fyi ng reusabl e software conmponents. Qut of this
understanding is energi ng a new di scipline dubbed domain
nodel i ng and anal ysis. This paper argues that domain nodeling
and analysis is nothing nore than a requirenents engi neering
process with a slight difference in enphases. Further, this
paper proposes that a requirenents engi neering process, and
rel ated tools and techni ques, can support the nodeling and
anal ysis of application domains. |In fact, this paper identifies
requirenents engineering steps, tools, and techniques that can
I nprove the effectiveness of domain nodeling and analysis to a
greater degree than any processes, tools, or techniques
devel oped to date specifically for the analysis of application
dormains. The material presented in this paper suggests that a
dormai n nodel i ng and anal ysis process should be nerged into the
requi renents engi neering process, strengthening both processes
and permtting increased benefits fromautomated tools that can
support both processes.

These argunents are presented in the foll ow ng fashion.
First, a brief summary of the requirenents engi neering process
I's provided. Second, a discussion of domain nodeling and
analysis is presented. Third, a mappi ng between the domain
anal ysis process and the requirenents engi neering process is
proposed. Finally, requirenents engi neering tools and
techni ques that can be applied to anal yze and nodel application
domai ns are identified.

The requirenents engi neering process begins with a concept
or idea, however vague, that m ght benefit from an autonmated

29

solution. The process ends when a detailed, witten
specification of software requirenments (called the SRS) is
produced. The process operating between these two m | eposts
conprises an iterative set of steps. Various proposals exist
for nam ng and defining these steps, but a great deal of
agreenent exists about the activities that nust be conpleted to
nove through the process. [DAVI 90, FREE80, RAMA86, SAGE90] This
paper assumes a requirenments engi neering process nodel defined
for a George Mason University Ph.D. sem nar, "Topics in

Requi renents Engineering," led by Dr. Janes Pal ner and held
during the fall senmester of 1992. Figure Ill1-1 illustrates the
process nodel

From later development phases

Elicit »| Organize Analyze —>{ Prototype >Document

Figurelll-1. Requirements Engineering Process Model

The first step in the requirenments engi neering process
I nvol ves elicitation of requirements fromthose who can refine
the concept. This step is both iterative and interactive.
Usual Iy, one or nore analysts skilled in the problem domain are
assigned to neet with users and nmanagers, to review
docunentation, to experinent with any existing autonated or
manual system Elicitation can recur often during the
requi renents engi neering process; note in Figure Il1-1 that
elicitation can be reactivated fromseveral other steps in the
process. The main aimof elicitation is to accunul ate as nuch
i nformati on about the requirenents as possible, ensuring that

30

the information is expressed in terns of the problemdomain. A
secondary aimof elicitation is to build trust and rapport
between the elicitors and the users, so that future iterations
of the elicitation process will be productive.

The second step in the requirenents engi neering process
enconpasses organi zation of the material gathered during
elicitation. The raw requirenents fromthe elicitation step
|l i kely contain redundancies, inconsistencies, om ssions, and
anbiguities. The organization step is the first opportunity to
di scover sone of these problens. (The earlier in the process
that errors are uncovered, the easier and cheaper they are to
fix.) Organization of the requirenents al so provides the
begi nni ng of understandi ng the problem by inposing a structure
on the raw requirements. The aimof the organization step is
uncover errors in the raw requirenents and to begin the process
of nodel building that continues during the analysis phase.

The third step in the requirements engi neering process,
anal ysis, conprises constructing a nodel of the problemin a
formthat can be exercised, exercising the nodel, and
di scovering requirenents errors: inconpleteness, anbiguity,
conflict, redundancy, and inprecision. These discoveries are
used to return to the elicitation step with a set of specific
i ssues that can be discussed with the users. Also during the
anal ysi s phase, problens in organization of the requirenments can
be uncovered, initiating a return to the organi zation step to
refine the nodel. Wen the analysis is supported by autonated
tools, the requirenments nust be transformed from natura
| anguage to a nore fornmal notation. The process of making this
transformation is itself a formof analysis that can help
di scover errors in the requirenents; however, care nust be
exerci sed because anal ysts have a natural tendency to interpret
the requirenments during this transformation. A nore prudent

31

course is to iterate through the elicitation cycle, getting the
user’s view, rather than making a hidden interpretation.

The fourth step, nost often seen as optional, enploys sone
formof prototyping to evaluate issues pending fromthe
anal ysis. For exanple, the requirenents mght be a bit unusual;

t hus, a proof-of-concept could be prudent. Mdre typically, the
particul ar user interface would be inplenented and exercised, in
effect prototyping to elicit user views on the interface, or to
eval uate the effectiveness of the interface. Sone requirenents
m ght reflect concerns about performance or sone delicate
al gorithns: these could be explored through prototypes. A
growing, but still mnority, position views prototyping as
iterative devel opnment of the actual application. This viewis
usually held only where the problemdomain is fairly routine,
and where perfornmance is not a critical issue.

The final step, docunenting, achieves a |arge
transformation of the information obtained during the preceding
steps. The requirenents are transformed into a Software
Requi renents Specification (SRS) intended to guide the design
phase of software devel opnment. The transfornmation nade during
this step noves the requirenments fromthe problemdonmain into a
sol ution domain. Conpletion of the SRS does not end the
requi renents engi neering process; these steps may be revisited
during later stages of the devel opnent.

The requirenents engi neering process is focused and
specific. The aimis to elicit, organize, and analyze
requirenents for a particular software system and to transform
those requirenents into a form the SRS, that can guide software
devel opnment. How does this conpare with processes for domain
anal ysi s?

Donmai n anal ysis attenpts to generalize all systens in an
application domain, that is, to produce a domain nodel that
transcends specific applications. [PRIE87a] Prieto-D az

32

envi si ons donain anal ysis as a process that precedes

requi renents engineering for specific systens. 1In his view, the
dormai n nodel that results fromthe analysis can help elicit,
organi ze, and analyze the requirenents for a specific systemin
an application domain. This viewis shared by Iscoe. [|SC088]

| scoe points out that "...lack of a formal nodel to represent
information at the application donain |level results in a severe
i nformati on | oss during the mapping process..." that creates the
SRS. [1SCO8B8, p. 300] |Iscoe goes on to denonstrate how domain
know edge can be used to detect anbiguities and om ssions.

Al t hough no accepted definition of the formof a domain
nodel exists, remarkable simlarity can be seen anong
researchers regarding the content of a domain nodel. Jacobson
and Lindstrom descri be a domain nodel as the set of domain
objects (including their attributes and functions) and the
rel ati onshi ps between them [JACX1] This description mrrors
that of other domai n anal ysis advocates. [ARAN89, | SC(88,

PRI EB7a] |scoe adds to his description of a domain nodel the
set of rules that can be used to conpose, generalize, and
speci al i ze domai n objects. [|SCC88]

The di sagreenent anong researchers regarding a
representational formfor a domain nodel seens to be notivated
by differences in the use that each intends for the nodel. For
exanpl e, |Iscoe hopes to generate inputs into any of a nunber of
transformati onal program generators; therefore, he envisions a
nodel that captures the rel evant donmai n know edge needed for
domai n-specific application progranm ng. (Not that he knows
what domain knowl edge is relevant.) So, Iscoe’ s research ains
to define a nodel for representing domain know edge. (He omts
conpl etely consideration of progranmng in the large, in favor
of small manageabl e applicati on donains.)

Alternatively, Prieto-Diaz ains to create specific, unique
| anguages for each domain that is nodel ed. The | anguage becones

33

t he donmain nodel and is used to describe objects and operations
common to the domain. As Prieto-Diaz explains: "if a donain

| anguage exists that can acceptably descri be the objects and
operations of a required system then the systens anal yst has a
framewor k on which to hang the new specification." [PRIE87a, p.
23]

Jacobson and Lindstrom prefer a graph representation of the
domai n because they aimto build a nodel that facilitates
reasoni ng about system nodifications. [JACOO1] Arango is
notivated by software reuse, and thus his nodel of the domain
i ncl udes software reusability information. [ARAN39]

Prieto-Diaz places the issue of domain nodel representation
i n perspective:

Sel ection of a particular representation
structure woul d depend on the kind of domain
anal yzed. Different fornms could be used

W thin the sane domain depending on its
size. A high | evel domain nodel could be in
the formof a faceted schene or a sinple

hi erarchy with semantic networks and franes

used for |ower |evel domain el enents.
[PRIEB7a, p. 28]

This issue of representation of the output of a donmain analysis
process is rather revealing. Since an SRS enbodi es a natural

| anguage docunent that is neant to guide further devel opment by
human, software designers, a vary of representations can be used
effectively. As with domain nodels, w de agreenent exists on
the general content of an SRS. The main differences in SRS
docunents are variations in form Wth respect to domain
nodel s, however, issues of representation appear paranount.
Domai n nodel s nust be bot h understandabl e by humans and
processable by a conmputer. |In addition, nodels of a particul ar
dormai n usual ly nust be integrated with nodels from ot her

domai ns. Such integration can be inpeded by inconpatible
representations. Because donmain nodels are sensitive to issues

34

of representation, the donain nodeling activity nust precede
creation of a SRS; therefore, donain analysis nust either
precede, or be contained within, the requirenents engi neering
process. Before considering the relationship between the domain
anal ysi s and requirenments engi neering processes, a discussion of
t he donmain anal ysis process is in order.

A nunber of researchers have proposed processes for donain
anal ysis. MCain proposes a four step process: 1) define
reusable entities, 2) create reusable abstractions fromthese
entities, 3) performa classification of the abstractions, and
4) define an abstract interface, the essential constraints and
limtations, and any custom zation requirenents for the
abstractions. [PRIE87a] Arango proposes a six step process: 1)
bound the domain, 2) collect standard exanpl es of
i npl ementations fromthe domain, 3) performa systens anal ysis
on each exanple, 4) identify potential abstractions, 5) map the
abstractions into a fornmal representation using conceptual
nodel i ng | anguages, and 6) identify potential abstractions that
can lead to multiple inplenmentations. [ARAN89] Probably the
nost conpl ete domai n anal ysis process nodel has been proposed by
Prieto-Diaz. [PRIE87a]

Prieto-Di az divides the donmain analysis process into three
phases: pre-analysis, analysis and post-analysis. The purpose
of the pre-analysis phase is to define and scope the domain, to
identify sources of know edge and informati on about the domain,
and to define a strategy for the analysis. The analysis
consists in finding abstractions for groups or classes of
groups, docunenting these abstractions as franes, classifying
and seeking rel ati onshi ps between the franmes, and docunenting
the rel ationships as a taxonony of the donain and as a structure
of relationships that can be used as a donain nodel. The
post - anal ysi s phase covers encapsul ating the reusabl e
abstracti ons and produci ng guidelines for reusing the

35

abstractions. Prieto-Diaz illustrates his proposed process with
a set of data flow diagrans that help to understand the inputs
to the process, the specific transformati ons or activities, and

the results. These diagrans are repeated here as Figures II11-2,
[11-3, I11-4, I11-5 111-6.
Domain Analysis Reusable

Guidelines Library

Domain
Analyst \

Domain
Analysis

Software
Engineer

} Existing
Domain
Systems

Expert

Figurelll-2. Domain Analysis Context Diagram [PRIE87a, p27]

Figure I11-2 provides a context diagramfor the domain
anal ysis process proposed by Prieto-Diaz. Note that the process
I nvol ves a donmai n expert and a domain anal yst on the front-end,
and that a set of reusable conmponents is output, as well as
gui delines for software engineers to use the reusable
conponents. In addition to domain know edge, input cones in the
form of exanples fromexisting systenms. Figure Ill-3 deconposes

36

t he context diagram

Domain Knowledge

Reusable
Components

Domain Mode

Domain Frames

Domain Analysis

Domain Taxaonomy

Requirements Domain

i Standards
Domain

Analysi
Guidelthes Existing
Systems

Figurelll1-3. Domain Analysis Level O [PRIE87a, p. 27]

Language

Figure I'11-3 corresponds to the pre-analysis, analysis, and post
anal ysi s phases proposed by Prieto-Diaz. Each of these phases
I's deconposed further in Figures Il11-4, I11-5, and I11I-6.

When dormain analysis is conceived as a prelimnary
activity that precedes requirenents analysis, some interesting
i ssues arise. For exanple, who conducts the analysis? Project
teans are usually focused on producing a specific product
related to the goals and objectives of the project. Form ng
speci al domain analysis teans rai ses other questions: Wo pays
for the analysis? Wat are the specific concrete outputs of the
anal ysi s? Who eval uates these outputs? How? These issues are
very simlar to issues raised in an earlier discussion about
remanuf acturing reusabl e software conponents (see pages 21 to
22).

37

Domain
Analysis
Guidelines

Domain Boundary

Existing

Knowledge
Sources

Define

Domain
Requirements

15 .
Domain

Requirements
Document

Domain
Knowledge
Definition
Figurelll-4. Pre-Anaysis Phase [PRIE87a, p. 27]
Existing 03
Systes function/ '
22 object Abstract function/object Model
Select Specific FUT)Ctionsl definitions . .
Functions/ Objects function/object

: descriptions
Objects

24
Define
Specific

Relationships

Attributes

relationship
definitions

25

Abstract
Relationships

relationship
descriptions

Domain Analysis

Requirements Document Figurelll-5. Analysis Phase [PRIE87a, p.27]

definitions

relationship
definitions

Domain
Language

Domain Frames
and Taxonomy

38

Encapsulation Guidelines

32

Encapsulate
Reusable
Work
Products

Domain Model
)
Com‘)o“d

3.1

3.4

Domain gelect | Candidates Create
Language Cordi date Domain Standards
ancidales Standards

33

Define
Reuse
Guidelines

Domain Specific Reuse Guidelines

Domain
Frames &

Taxonomy Figure 111-6. Post-Analysis Phase [PRIES7a, p.27]

Prieto-Di az appears to conceive domain analysis as a |inear
transformation that captures and represents domain know edge in
a nodel that enabl es generation of reusable conponents and
creation of standards for reusing conponents. All information
created during this transformation is then available to assi st
i n engi neering requirenents for specific applications within the
domai n.

The approach outlined by Prieto-Diaz is unrealistic
regardi ng several issues. First, understanding a domain
sufficiently to generate a domain nodel is likely to be an
iterative process. Mnagenent is unlikely to invest in an
expensive, iterative activity as a front-end to requirenents
engi neering. Further, application projects are unlikely to be
hel p i n abeyance, pending conpletion of a rigorous domain nodel.
Second, creation of unique | anguages for each domain will |ikely
i nhibit integration between nodels from several distinct, yet
rel ated, domains. Such inhibitions will |essen the return from
investing in the domain analysis. These limtations can be
overcone, possibly, by incorporating domain analysis and
nodeling activities into the requirenents engi neering process
outlined earlier.

39

Transforns 1.1 through 1.4 of Prieto-Diaz’'s pre-analysis
phase (Figure I11-4) map nicely into the elicitation step in the
requi renents engi neering process. The inputs, for exanple, are
i dentical: domain experts, existing systens, and anal ysis
gui delines. The enphasis while analyzing a domain, rather than
one specific application, would be broader and nore general.
Still, many of the processes and activities would coincide, and
some of the sane tools and techni ques could support elicitation
of know edge about specific applications, as well as, know edge
about the entire domain in which the applications operate.
Donmai n know edge elicited could be used to better understand
specific applications; and, because a nunber of applications
are likely to be devel oped over tine, two conditions m ght hol d:
1) not all domain know edge need be devised at once (refinenments
and additions can be nade with each new application devel opnent)
and 2) any domai n know edge previously acquired can assist in
the elicitation, organization, and anal ysis of new applications
in the domain.

Transform 1.5 of Prieto-Di az’s pre-analysis phase can be
mapped to the organi zation step and the early portions of the
anal ysis step defined for the requirenents engi neering process.
Many of the tools and techni ques available to hel p organi ze and
anal yze software requirenments should al so be applicable to
defining domai n requirenents.

The anal ysis phase defined by Prieto-Diaz (Figure I11-5)
can be viewed as the |ater portion of the analysis step in the
requi renents engi neering process. During this phase, domain
concepts, functions, and relationships are identified and
classified. The output of this phase includes a donai n nodel,
supported by a description of domain concepts (as franmes) and
rel ati onshi ps (as a taxonony). Prieto-Di az also proposes that
during this phase a domai n specific | anguage be created,;
however, the current paper proposes that the domain specific

40

| anguage in Prieto-Diaz’s nodel be replaced with a
representation that supports prototyping, and that steps 2.7
through 3.3 of Prieto-Diaz’s nodel be replaced with a
prototyping step. The aimof the prototyping step is to

eval uate the domain concepts, functions, and rel ationships
defined during organi zation and analysis. |Is the understanding
sound? Are the concepts reusable? Can the concepts be
integrated with reusabl e conponents from ot her domai ns?
Prototypi ng can hel p answer these questions, and a prototyping
system can define an architecture into which reusabl e concepts
and conponents can be fitted. Prototyping, in effect, can

bri dge the anal ysis phase to the post-anal ysis phase of
Prieto-Diaz’s domain anal ysis nodel by providing a neans to
eval uate domai n know edge, defined and represented during
earlier phases, and to eval uate candi dates for reuse. From
here, the final step (3.4) of Prieto-Di az’'s nodel can be
followed. This step naps to the docunentation step in the
requi renents engi neering process; but instead of an SRS, the
out put includes: descriptions of reusable concepts and
conponent s, donmi n-specific guidelines for reuse, and donain
st andar ds.

Havi ng descri bed a mappi ng bet ween donmai n anal ysis and a
requi renents engi neering process, the current paper now
considers tools and techniques that can support the integrated
process. Specifically, techniqgues and tools for know edge
acqui sition and representation are discussed in the next
section, Domain Know edge Acquisition and Representation, and
prot ot ypi ng approaches and systens are explored in Section V,
Pr ot ot ypi ng and Reuse

41

I'V. Domain Know edge Acquisition and Representation

Anong the nost conmon probl ens found during a conprehensive
study of a typical, |arge-scale software devel opnent project was
a lack of wi despread domain know edge anong the project team
[CURT88] Lack of donain know edge was keenly felt in this
| ar ge- scal e project because,

[a] | though individual staff nenbers

under st ood di fferent conponents of the

application, deep integration of various

know edge dormains required to integrate the

design of a |arge, conplex systemwas a

scarcer attribute. Specification m stakes

of ten occurred when designers did not have

sufficient application know edge to

interpret the customers intentions fromthe

requi renents statenment. As one system

engineer put it: "Witing code isn't the

probl em understanding the problemis the

problem’ [CURT88, p. 1271]
This same study al so found that superior software system
desi gners possessed a detail ed understandi ng of the application
dormai n, and could map between application requirenments and the
software structures needed to inplenment the requirements. From
this study, three inplications were drawn: 1) software tools and
practices nmust raise the level of application domain know edge
across the entire devel opnent staff, 2) software tools and
nmet hods nmust accommobdat e experi nentation and change, and 3) any
sof tware devel opnent environnment nust be a nmedi um for
comuni cation. These inplications |lead directly toward nethods
for acquiring, representing, and sharing domain know edge, and
t oward prototypi ng approaches.

This section of the paper considers techniques for
know edge acquisition and representation. The discussion begins

by identifying sources for domain know edge and descri bi ng sone

42

of the problens faced by domai n anal ysts (or know edge
engi neers) when dealing with know edge sources.

Three fundanental know edge sources exist: autonated
systens that operate according to domain rules, technical
docunent ati on, and peopl e who enbody domai n knowl edge (so-called
dormai n experts). A domain analyst can certainly sit down at a
consol e and use an existing systemto obtain direct, concrete,
and unanbi guous knowl edge about an application. This is,
per haps, tedious, especially if the systemis large. The domain
anal yst will probably still need to refine the know edge gai ned
fromusing the system by consulting with technical docunentation
and domai n experts, but the nethod is well understood. Less
wel | understood (as discussed earlier on pages 21 to 22) are
met hods to automatically extract domain know edge fromthe
actual code for the application system

Revi ew of technical docunentation presents another set of
probl enms. Reading a text on any subject requires that the
reader possess a | arge base of know edge, including general
know edge, subject-rel ated background know edge, and know edge
about how information is represented. [KONT88] These
requi renents place a certain burden on the domain anal yst who
nmust read and understand techni cal docunments relating to an
application donmain. These requirenents al so i npede the
devel opnment of automated systens intended to extract know edge
fromtexts. An additional inpedinment to autonated know edge
extraction is the tendency to rely on graphs, pictures, and
charts in technical docunments. Autonated approaches for
extracting know edge from graphi cal naterial are beyond reach at
the present time. [NAGY92] So, it appears that donain anal ysts
must rely on domain experts to provide the bul k of
domai n- speci fi ¢ knowl edge needed to understand particul ar
appl i cations.

43

Unfortunately, eliciting information from donain experts is
difficult for a nunber of reasons. One problem sonetines
easily overl ooked, is that nany people who appear to be donain
experts are, in fact, actually not. [CHORO0] Chorafas offers a
set of guidelines to help know edge engi neers discern a real
expert: 1) a real expert does not fear change, but understands
that change is inevitable; 2) a real expert knows his own
strengt hs and weaknesses; 3) a real expert appreciates gray
areas; 4) a real expert can handl e, and even thrive under,
stress; 5) a real expert sees learning as a |ife-long endeavor
and never msses an opportunity to extend her own know edge; 6)
a real expert sees sharing know edge with others as a duty.

[CHORO0, p. 43.]

After a domain expert is identified, other problens nust be
overcone by the anal yst who hopes to acquire donain know edge
t hrough interview ng techni ques. The nost basic problemis
m scomruni cati on between the know edge engi neer and the domain
expert. [MJSE89] These two individuals rarely speak the sane
techni cal | anguage. To reduce m sunderstandi ngs, the know edge
engi neer must gain a prior know edge of the application donain.
Still, conmunication remains difficult because the anal yst may
need precise information, while the domain expert talks in
i nconsi stent and i nprecise terns.

QO her problens relate to the nature of experts. For
exanpl e, experts do not introspect reliably. [MUJSE89] Experts
are usually bad at explaining, but good at doing. [CHOR90]
Experts have difficulty articulating problem solving know edge
in aformsuited for representation in an expert system
[BOOS86] For these reasons, the donmain analyst must find an
expert who can, and who is willing to, spend a few hours
exploring a donmain, and who can be on call while the elicited
knowl edge is encoded in an expert system and then tested.

[CHOR9O0]

44

Even nore fundanmental problens face the donain anal yst
because the nodel provided by expert systens (i.e., a know edge
base, coupled to an inference engi ne) does not seemto reflect
the way experts actually think. [MJSE89] |In experts, changes in
t he know edge base seemto alter thought processes. For
exanpl e, as people nove fromnovice to expert, they tend to
chunk know edge into highly specialized, content-specific and
task-specific methods. Experts rely on a huge anount of this
specific, content know edge. The process know edge used by an
expert then becones dependent on the content know edge possessed
by that expert. Expert systens are not presently capabl e of
altering their reasoni ng nethods as they obtain increased
content know edge over tine. This difference creates an
I nconpatibility between the basic nodel used by a
know edge- based system and the thought processes of experts.

Al t hough these problens represent barriers to a donain
anal yst, research into know edge acquisition techni ques suggests
sonme strategies, techniques, and tools that can hel p overcone
such barriers. Know edge acquisition research considers both
human t echni ques and aut omat ed net hods. These are discussed in
turn.

The techni que nost often used by domain analysts to elicit
knowl edge from domai n experts is the interview [CHOR90] In
general, when dealing with an expert, an interviewis
one-on-one. The domai n anal yst nust have an under st andi ng of
the concepts and jargon in the domain and nust know what
guestions to ask. Both the interviewer and the expert mnust see
the interview as an iterative process. The results of
interviews alone are usually unsatisfactory, so interviews are
often coupled with observation of the expert at work. The
i ntent of such observation is to verify and clarify information
obtained during interviews, as well as to prepare additional
questions for future interviews.

45

O her strategi es can augnment interviews, and, thus,
strengthen the know edge acqui sition process. [CHOR90] For
exanpl e, the domain anal yst can set up a recorded session where
t he domain expert, w thout the domain anal yst present, is
I ntroduci ng two novices to the problem domain. The presence of
two novices raises the odds that the session will be
i nteractive. The donmain anal yst can use the recording to
prepare for interviews with the domain expert.

Anot her technique available to a donmain analyst is the
expert workshop. [CHOR90] In this technique, the analyst
conducts a workshop with the domai n expert where case studies
and scenarios are presented to the expert. The analyst actively
probes with questions to reveal the experts reasoning, and takes
readabl e notes for later review This techni que can be
strengt hened by sanpling several experts in an N-FOLD approach.
While interviewing nultiple experts increases the cost of
know edge acquisition, application of N-FOLD techni ques to other
front-end software devel opnent activities appears to be cost
effective. [MART90] A nore difficult problemwhen sanpling
experts is that domai n know edge is not always additive; in
fact, an analyst mght be forced to sel ect between divergent
approaches or rules gleaned fromdifferent experts.

Wil e interview techniques for know edge acquisition remin
| argely a human endeavor, nany researchers aimto inprove the
ef ficiency and effectiveness of interview ng by enpl oying
automation. Two general approaches are bei ng pursued: 1)
aut omat ed assi stance for the domai n anal yst and 2) automated
elicitation, directly fromthe domain expert. The automated
assi stant approach appears generally applicable to a full range
of problens, fromsmall to |arge, across many domains. The
focus in these approaches is to help an anal yst by exploiting
the strengths of automation. The direct elicitation approach
appears nore limted by a need for a priori, donain-specific

46

knowl edge. To overcone this limtation nost research on direct
elicitation provides tools that could be viewed as expert system
generators, that is, for each specific domain, a conputer
programelicits information froma domain expert and then
generates an expert systemfor the domain. O course, sone
researchers are investigating hybrid approaches to provide

know edge system wor kbenchs that provide tools for autonated

assi stance of analysts, as well as tools for autonated
generation of expert systens. Some specific tools supporting
each of these approaches are described bel ow.

Fi ckas envisions a tool, KATE, for automating the analysis
process. [FICK87] Fickas views the requirenments analysis
process as an interactive, iterative, problemsolving paradi gm
i nvolving a user and analyst. To support this paradigm Fickas
pl ans KATE to consist of a front-end (which includes a donain
nodel , a know edge acqui sition conponent, and a critic) and a
speci fication generator (which can map from an i nternal
know edge representation into any nunber of existing
specification | anguages). KATE s donmai n nodel woul d enconpass a
wi de range of know edge: 1) conmpn objects, operations, and
constraints, 2) known solutions to hard design and
i npl ement ati on probl ens, 3) an understandi ng of how t he
environnment mght affect the system and 4) a nodel of
typicality for the donmain, but nodul ated by any nanagenent
policies. Such a nodel is easier described than inplenented.

At the tinme Fickas was reporting his approach, he had
i npl enmented a snal | - KATE (SKATE). The mai n purpose of SKATE was
to show t hat domai n know edge can be used to detect errors in a
probl em description that cannot be detected solely using
syntacti c know edge. The domai n nodel constructed for SKATE was
hand- coded usi ng Knowl edge Engi neering Environnment (KEE), an
expert systemshell that features a frame-oriented
representation | anguage (see the discussion of know edge

47

representation below). The main result of SKATE was | earning
about what would be required to nake KATE a success. The donain
nodel mnust be nore general, including support for |earning new
concepts as they arise. KATE nust enbody enough domain
know edge to avoid requiring the user to input the tedious lists
of objects, actions, and constraints for the donmain. KATE nust
al so include an exanpl e generator, because a strength anong
dormai n experts is the ability to generate significant exanples
that reveal domain rules that m ght otherw se be overl ooked.
Anot her conponent of Fickas’ paradigmis the critic. The
job of the critic is to poke holes in a requirenents description
by using the domai n know edge base from KATE. For the exercise
wi th SKATE, Fickas inplenmented a critic called JOG In
experinments with a library problemdomain, JOG was able, while
anal yzing a requirenents statenent, to discover: mssing
resource classes, lack of a borrowing tine limt, a mssing
concept of books on reserve, mssing limts to the nunber of
books that coul d be checked out at one tinme, om ssion of
security requirenments, and m ssing queries that a borrower m ght
wi sh to nake. Wile this perfornmance was inpressive, success
depended | argely on an extensive domai n knowl edge base whi ch was
hand- coded by a human know edge engi neer after interview ng

domai n experts. As Fickas pointed out we have yet to

denonstrate an interactive acquisition nodel, nor a neans for

| earni ng new concepts introduced by a client." [FICK87, p. 66]

In effect, all SKATE and JOG acconplished was to denonstrate the

type of autonmated assistance that could be provided to a

requi renents anal yst, given a sufficient domain knowl edge base.
Anot her researcher, Shemer, describes a systens anal ysis

expert aide (SYS-AIDE) intended to help an anal yst interview and

col | ect assertions about the problemdomain and to construct a

conceptual nodel. [SHEMB7] SYS-AIDE is nodel ed as an expert

syst em aski ng questions in order to build a nodel. The

48

guestions asked by SYS- Al DE should point the analyst to the

i nformati on that must be collected to successfully construct a
nodel of the domain. |In effect, SYS-AIDE elicits assertions
fromthe anal yst (who nust then elicit know edge froma domain
expert) and, given the assertions elicited, maintains a
conceptual nodel by addi ng and nodi fying assertions, and by
reasoni ng about relationships. The specific assertions vary
with the domain, but the reasoning rules are invariant know edge
encoded within SYSSAIDE. |In effect, the invariant know edge is
anal ysi s process know edge, so SYS-AIDE attenpts to be an expert
domai n anal yst.

Anot her tool to assist the domain analyst is reported by
O Bannon. [OBANB7] This tool is simlar in concept to SYS- Al DE,
but adds know edge of elicitation strategies. A rule
constructor encodes nmethods to elicit, record, and anal yze
responses froma domai n anal yst. During know edge acqui sition,
the systemoffers the domain analyst a prioritized |list of
actions to be taken at each interview step and suggests the nost
effective verbal responses to elicit the necessary information.
Once the information is entered into the rule constructor by the
dormai n anal yst, the system can anal yze the | ogical inplications
of the assertions and produce a prelimnary set of production
rul es.

Anot her approach built on the principle of assisting the
anal yst is described by Pal ner and Fields of George Mason
University (GW). [PALMB2] The environnment devel oped at GW
covers the entire requirenents engi neering process, not sinply
know edge elicitation; however, tools are included for eliciting
requi renents from groups of users and for anal yzing requirenents
for conflict, redundancy, inconpleteness, inprecision, and
anbiguity. The environnent provides a nice franework, as well
as a set of useful tools. Plans for future work include
i ncorporating nore semantic knowl edge into the anal ysis tools.

49

Since the environnment includes capabilities for prototyping, a
possibility exists to investigate nmeans of tying domain nodel s
to prototypes through specific know edge representati on schenes.
The requirenents engineering research at GW goes further than
nost other efforts to establish an environnent into which tools
can be fitted. Such an environnment enhances the effectiveness
of individual tools by enabling themto be conbined and applied
toget her in novel ways.

A know edge acquisition tool that seenms to fit within the
phi | osophy of the GWJ requirenents engi neering environnment is
REVAP. [RAME92] The aimof REMAP is to capture deliberations
that occur during requirenments engi neering and software design.
Specifically, REMAP captures the design rationale so that the
design is nore likely to be understood | ater, and, therefore,
reused. REMAP supports the increnental and iterative nature of
the requirenents and desi gn processes. Perhaps REVAP coul d
provi de a bridge between the GV requirenents engi neering
envi ronnment and the software design process.

Anot her aut omat ed assistant that attenpts to bridge between
requi renents and design is Fickas’ Critter. [FICK92] Critter
enbodi es knowl edge of system design strategies and concepts; a
hunman desi gner is expected to provide domain know edge. Critter
and the designer interact to develop a design to solve a
dormai n-specific problem To date, the results with Critter are
not encouraging. Critter’s limted reasoning techni qgues prevent
its use on | arge software engi neering problens; the analysis
algorithns used in Critter are nmuch too slow for an interactive
design system and Critter’s knowl edge base and representation
onmt several classes of system design concepts.

Anot her cl ass of know edge-based systens attenpts to
repl ace the domain anal yst with an expert system generator.

Such generators interact directly with a domain expert to create
an expert systemfor a specific donmain. One such system the

50

Expertise Transfer System (ETS) reported by Boose, attenpts to
cut the tine required (typically six to 24 nonths dependi ng on
the donain) to create an expert systemusing interview

techni ques. [BOOS86] ETS enpl oys clinical psychotherapeutic

I nterview ng nethods, called Personal Construct Theory,
originally devel oped by George Kelly. [KELL55] ETS
automatically interviews an expert, analyzes the infornmation
gat hered, and then generates a set of production rules. ETS
I ncorporates an inference engine to permt testing of the
generated production rules.

ETS first elicits conclusions that the expert systemto be
generated should be reaching (e.g., specific diseases,
managenent deci sions, diagnostic recommendations). |If the
expert does not know, an incremental interview node is started.
Once the conclusions are captured, ETS presents these, three at
atinme, to the expert and inquires about simlarities and
differences. The result of this initial phase is a |list of
el ements to be classified and a |ist of classification
paraneters. During a second phase, the expert is asked to rate
each el enent agai nst each pair of traits using a nunerical
scal e, augnented with the ratings neither and both.

Once arating grid is established, ETS i nvokes several
anal ysis methods to structure the know edge. First, ETS builds
a graph of inplied relationships, and then conputes matching
scores between traits and goals. The expert is consulted to
hel p di stinguish between closely related concepts. Second, ETS
generates production rules of two types: conclusion rules and
internmediate rules. Each rule is associated with a certainty
factor between -1.0 (False) and +1.0 (True). Once production
rul es are generated, the expert can use the inference engine in
ETS to test the know edge base, or she can generate a know edge
base for input to an expert systemshell, such as KEE.

51

ETS, while a powerful tool, is not without |imtations.
For exanple, ETS is best suited for anal ysis class problens
where the sol utions can be enunerated ahead of tinme. ETS cannot
handl e constructive-class probl ens where uni que sol utions are
built from conponents. Also, the grid nmethod cannot elicit deep
causal know edge, procedural know edge, or strategic know edge.
For some donmins, the expert finds it difficult to identify
simlar sets of conclusions at useful levels of granularity.
Experts can al so have difficulty interpreting the nmeaning of
certainty factors, when viewed in isolation, because these
factors are relative to each other. Sone practical problens are
al so annoyi ng: know edge grids devel oped by individual experts
cannot be conbi ned and know edge grids cannot be updated easily.

Anot her system PROTECE, reported in the literature is
simlar in approach to ETS. [MJSE89] PROTEGE requires that a
know edge engi neer provide general know edge about an
application area. Wth such know edge, PROTEGE can generate
know edge editors for the application area. Domain experts then
use the know edge editor to produce specific expert systens for
t he application area.

PROTEGE and ETS are representative of a class of systens
ai med at generating expert systens, either fromexperts or from
an existing know edge base. Oher exanples of such systens
i nclude: META-DENDRI L [BUCH78], AQL1 [M CH80], TEI RESIAS
[DAVI 81], and NANOKLAUS [HASS83]. Sone researchers have picked
up this trail and are attenpting to enpl oy expert systens to
support donai n-specific reuse.

| scoe advocat es using expert systens to enable users "
to directly create and nmaintain their own prograns because it is
unreasonabl e to expect that there will ever be enough
prof essi onal programmers to neet the continually increasing
dermands for software.” [1SCO88, p. 301] |Iscoe believes that
dormai n knowl edge is the key to successful user progranmm ng. He

52

outlines a research programto explore nmethods to build a donain
nodel as a know edge base, and then to use the know edge to
transf orm user-provi ded, application specifications into
run-time prograns. As with nost approaches of this type, |scoe
intends to limt his investigation to progranmng in a snall
domai n.

Anot her interesting approach, still limted to a narrow
dormain, attenpts to generate know edge directly and
automatically fromtechnical text. [KONT88] Kontas and Cavouras
propose to parse text froma technical docunent to create an
attribute grammar (both syntax and semantics) representation of
the information. Their research works with a BASIC progranm ng
docunent as the input text. They have determ ned that parsing
the text requires: subject-related know edge (i.e., BASIC
progranmm ng concepts), linguistic know edge (i.e., |exical,
syntactic, and semantic know edge of English), and
representational know edge (i.e., attribute gramrar rules).
Wil e this approach appears unique within the literature, the
results are not encouraging. Parsing is slow, the subject text
is very narrow, attribute grammars can only represent two types
of relationships; the vocabulary processed is snall; and the
resulting representation can only answer a single type of
guesti on.

More prom sing than any of the approaches that repl ace
dormai n anal ysts with expert systens, hybrid approaches
i ncorporate automated assistants together with expert system
generators and ot her supporting tools to create a know edge
acqui sition workbench. A typical exanple of this hybrid
approach is AQU NAS. [KITT87] AQUI NAS, shown in Figure IV-1,
gi ves automat ed assi stance to both domain anal ysts and domain

53

experts.

Dialog Manager
Repetory [Hierarchical|Uncertainty] Inferencg Multiple [|nduction | Multiple
Grid Structure [10015 Engine | Scale Tools Expert
Tools Tools Tools Tools

Object Oriented Data Base Management System
CommonLISP and Common LOOPS

Figure IV-1. AQUINAS Knowledge Acquisition Workbench [KITT87, p. 99]

Tools fromthe AQU NAS wor kbench hel p anal yze the probl em
domain, classify the problemtask (and any subtasks), identify
probl em sol vi ng net hods, suggest appropriate know edge
acquisition tools, and recomend specific strategies for using
the tools. In philosophy, AQUNAS is simlar to the

requi renents engi neering environnment devel oped at GVWUJ. A range
of tools is included inside an integrated environnent; analysts
can use the tools in a variety of novel ways; and AQU NAS even
advi ses anal ysts on appropriate nethods to acquire know edge.

In the precedi ng di scussion of know edge acquisition
t echni ques, nethods of representing know edge within a know edge
base were sonetines nentioned. A nore conplete presentation is
I n order because know edge representation is the single nost
I nportant factor determi ning the power of expert systens
applications that can be built. [CHORI0]

Know edge representation schenmes can be divided into four
categories: logic progranm ng, production rules, franmes, and
semanti c networks. These schenmes are usually m xed wthin
practical applications of know edge-based systens, but
consi dering each representation in isolation provides an
appreci ation of the strengths, weaknesses, and applicability of
each.

54

Logic programmi ng i s programr ng by description. [GENE85]
Specific assertions are declared explicitly to be true, and then
are conbined with a general inference procedure. The assertions
describe objects and rel ationships wthin a problemdomain. The
I nference process requires that each statenent in the know edge
base nmust be capable of evaluating to true or false. |In effect,
execution of the programis nodel ed as a deductive proof. Logic
programm ng pernmits increnmental devel opnent of the know edge
base and enables the programto explain howit solved each
problem and to tell why it believes its answer to be correct.
The practicality of logic progranm ng in software engi neering
depends to sonme extent on the underlying technology. In
general, logic progranmm ng systens are inefficient and difficult
to use. Another drawback of |ogic progranmng systens is the
requi renent for evaluation as true or false. Wile such
eval uati ons are necessary to deductive nethods, many expert
systens nust draw concl usions fromuncertain data, nust reason
by anal ogy, and nust generalize from existing know edge.

A derivative of logic progranm ng, rul e-based systens,
represents know edge as a set of production rules. [HAYE85]
Production rules are "if-then" constructions that can conbi ne
precondi ti ons using Bool ean operators. Wen the "if" cl ause
eval uates to true, the "then" actions can be executed. The
skill of a rule-based systemincreases proportionally to the
size of the rule set. Expert systens have sol ved a w de range
of conpl ex problens by selecting and eval uati ng production
rules. Such systens can sel ect adaptively the best sequence of
rules to use, and can explain the concl usions reached.

As successful as rul e-based systens have proved in
practice, a nunber of problens limt their potential. At
present, there is no analytical foundation for rul e-based
systens that allows separating sol vabl e probl ens, from
unsol vabl e ones. Al so, suitable techniques are needed to test a

55

rul e set for consistency and conpleteness. In practice, rule
sets lead to slow executions and are difficult to scale up to
sizes required for large problens. Finally, nethods are needed
to seanlessly integrate rul e-based systens into nornal data
processi ng applications.

A different school of know edge representation deenphasi zes
| ogi ¢ programm ng and production rules in favor of descriptive
tenpl ates, called franmes. [FIKE85] Franes provide a rich
structural |anguage for describing domain objects and sonme basic
rel ati onshi ps between those objects. For a given object,
attri butes and taxonom es can be represented. Wthin sone frane
representations, action procedures can be attached to specific
attributes. The concept of frames matches nicely the theory of
obj ect oriented progranmm ng.

Reasoni ng services available in a pure franes
representation are limted to the taxonom es between the franes,
usually this neans inheritance rel ationships, attribute val ue
groupi ngs, and cardinal relationships. Sonetines, franes are
concei ved as the database of a know edge base; in such
conceptions, frames are nornmally augnented with production
rul es, or sone other method of describing relationships, to form
a hybrid representation (see, for exanple, KEE)

In an effort to enhance the value of franes, sone
researchers propose using semantic networks. [EEPE92] Senantic
net wor ks provi de natural ways of representing inheritance and
aggregation. Searching through the frame structure based on
i nheritance and aggregation relationships or for exact matches
anong sets of attribute values is very efficient, but these are
the only types of searches that semantic networks all ow

Even in the case of inheritance relationships, semantic
networks | eave two situations unaddressed. One is exceptions to
a classification hierarchy. For exanple, if elephant is a class
with the attribute color = gray and royal el ephant is a subclass

56

of elephant with the attribute color redefined to equal
not _gray, then, if Joe is a royal elephant, is Joe gray? This
i s an anbi guous question in a semantic network. Nornally,
exceptions are resolved by using the traits of the nearest
relative, so the anbi guous question would be answered: no. The
second situation not addressed by senmantic networks is multiple
i nheritance. For exanple, consider two classes: Buddhists and
athl etes. Buddhists are vegetarians and athletes are
non-vegetarians. |If Tomis a Buddhist and an athlete, then is
Tom a vegetarian? Proposals exist to solve multiple inheritance
problens in semantic networks through evidential reasoning
techni ques. For exanple, relative frequencies can be encoded
into attributes in each frane, and then reasoning can be based
on probabilities. The conbination of franes and semantic
net wor ks appears prom sing as a know edge representati on net hod,
but nore research i s needed.

Even as avail abl e today, frames, coupled with semantic
net wor ks, have sonme advant ages over |ogi c-based approaches. For
exanpl e, franes all ow know edge to be represented in a formthat
experts typically use; semantic networks allow concise
structures to represent certain relationships (i.e., inheritance
and aggregation); frane-based, semantic networks support
speci alization fromnore general concepts; and senantic networks
of frames enabl e construction of special - purpose,
hi gh- perf ormance, deductive algorithms. However, w thout
augnent ati on by production rules, the ability to reason about
frames is strictly limted to the relationships and val ues
encoded in the frame structure.

Practical know edge-based systens intended to support
devel opnent of |arge, software systens will require multiple
ki nds of know edge, represented in the nost appropriate formfor
the intended application. R ch and Fel dman descri be such a
system called CAKE. [RICH92] CAKE is a prototype know edge

57

representation and reasoning systemused to generate two

aut omat ed assi stants for programmers: the Requirenents
Apprentice and the Debuggi ng Assistant. CAKE enabl es
representation of structural artifacts (e.g., specifications,
prograns, requirenments) at various |evels of abstraction. CAKE
eval uat es the reasonabl eness of decisions reached by a program
fills in mssing details, consults with the progranmer before
commtting to conpl ex decisions, and explains to the programrer
the actions taken and deci sions nade. Providing these
capabilities requires seven | evels of know edge wi thin CAKE (see
Figure IV-2).

| Plan Calculus |

| Frames |
| Algebra |

Types

Equality

Boolean Constraint Propagation

| Truth Maintenance |

Figure IV-2. Seven Layers of Knowledge and Reasoning Within CAKE [RICH92, p. 452]

Notice that the know edge representations enconpassed by CAKE
i ncl ude | ogic programm ng, production rules, frames with
semanti ¢ networks, and nore.

While the effort behind CAKE is inpressive, the tool is not
very usabl e, except by the nost know edgeabl e progranmers.
Al so, the know edge structure cannot be updated easily in sone
cases. As first devel oped, every fact in CAKE was retractable
so that increnental devel opnent coul d be support ed.
Unfortunately, the resulting systemwas too slow. Now, two
paral | el nechani sns are inplenented: one efficient, but
non-retractable, the other, nore expensive, but retractable.

Bef ore concl uding this discussion about know edge
acqui sition and representation, consideration of problem solving

58

strategies is in order. The problem solving strategy used by a
specific expert systemdefines the types of problens that the
system can solve. This is an inportant consideration because
software reuse falls into a particular category of problens that
nost expert systens are not equi pped to sol ve.

Problem Categories

Analysis/ T Synthesis

(Interpretation) (Construction)
| dentify Predict ~Control Speéify// Deﬁgn\A)ssemble
/ . . l/ Constrain \ \"
Monitor Diagnose Simulate Configure Plan Modify/
Repair

Figure 1V-3. Problem Categories for Expert Systems [KITT87, p. 97]

Figure V-3 presents a taxonony of problens that expert
systens m ght help solve. Analysis problens require sel ection of
t he best solution fromanong a set of known sol utions. [CLAN3G]

Synt hesi s probl ens require conposition or configuration or

nodi fication of conponents to construct a previously unknown
solution. The majority of expert systens enploy heuristic
classification strategies that apply to analysis problens. A
small mnority of expert systenms use heuristic conposition

nmet hods that apply to synthesis problens. Unfortunately,
reusi ng software froma conponent library, given sone

I nstructions froma user and sone know edge wi thin an expert
system presents a rich set of construction-type problens. How,
t hen, can domai n know edge represented within expert systens be
applied to requirenents engi neering and software reuse?

Donmai n know edge, encoded in expert systens, can be used to
anal yze requirenents statenents for anguity, inconpleteness, and
conflict. Such reuse of domain know edge during requirenents
engi neering has been denonstrated in research results such as
SKATE. Automated elicitation and subsequent representation of

59

dormai n knowl edge in a formthat can be applied to requirenents
anal ysi s appears feasi bl e because expert systens have a history
of success when applied to analysis and cl assification problens.
Elicitation and representati on of domain know edge in a
formthat facilitates construction or synthesis of software
systens from reusabl e conponents is an open question. To
acconplish such results, know edge of nany donai ns nust be
represented in a formthat can be interpreted and acted on by a
sof tware constructor or programgenerator. In effect,
successful creation of an application programfromreusable
sof tware must use know edge to build a bridge between
requi renents and code. The semantic gap between these |evels
appears large. A prototyping step within the requirenents
engi neering process presents an early, inexpensive opportunity
to denonstrate the feasibility of automatic program construction
or generation. The next section of this paper considers
connecti ons between domai n know edge, prototyping, and software
reuse.

60

V. Prototyping and Reuse

The idea of prototyping for software systens origi nated
from an observation: when a programrers build software to sol ve
a problemw th which they are unfamliar, the first
i npl enmentation is al nost always i nadequate, but the second is
adequate. Sonetines, the original developnment is not delivered
to the custoner, but contributes to an extended schedule and to
cost overruns. Some practitioners and researchers conceived of
a devel opnment process that takes advantage of these early
devel opnment efforts by sharing the results with users in order
to obtain feedback regardi ng requirenents and preferences.

Since these initial devel opnents, prototyping concepts have
matured greatly. In fact, there are now various theories and
classification schenes for prototyping approaches. For exanple,
Sage and Pal ner divide prototyping techniques into three
categories according to goal, or aim 1) purposeful, 2)
functional, and 3) structural. [SAGE90] According to Sage and
Pal mer, purposeful prototyping focuses on verifying user
requi renents and ensuring that software requirenents are
consi stent; functional prototyping intends to verify that a
systemw || acconplish what the user wants; and structural
prototyping tests the feasibility of a design approach. Sage
and Pal nmer also identify six other classification schenes
proposed by researchers and provide a mappi ng between these
schenmes and their own proposals.

Sage and Pal ner share sonme other insights that should be
kept in mnd when eval uating prototyping techniques. For
exanpl e, al though many users argue that iterative prototyping is
t oo expensive, Sage and Pal mer point out that finding errors
during the requirenments phase neans corrections will be nuch,
much cheaper than if the sane errors were not discovered until

61

| ater in the devel opnent process. Sage and Pal nmer al so indicate
that not all application domains are amenabl e to prototyping.
They state that real-tinme systens are not good candi dates for
prototyping, that |large systens can only be prototyped in a
limted fashion (perhaps to identify user requirenents), that
smal| systens can be prototyped to experinent with the user
interface, and that conventional, information systenms m ght be
appropriate candidates for full prototyping.

In the current paper, prototyping approaches are classified
in two ways: by technical approach and by life-cycle nodel.
Different ideas are discussed for each of these categories, and
speci fic exanples are described. Two anbitious prototyping
research projects, the Programrer’s Apprentice [RI CH38] and Easy
Programm ng [MARQA2] are singled out for nore detail ed
consideration. The section closes with a discussion of
rel ati onshi ps bet ween prototypi ng and reuse.

Three technical approaches to software prototypi ng can be
di scerned fromthe literature: transformation, conposition, and
simulation. The vision of advocates of the transformation
approach, often called autonmatic programr ng, was described in
the literature in 1983 by Bal zer. [BALZ83] Bal zer’ s vision of
automatic progranm ng was refined in a 1985 article by Barstow.

An automati c programm ng systemallows a
conmput ati onal Iy naive user to describe
probl ens using natural ternms and concepts of
a domain with informality, inprecision and
om ssion of details. An automatic
progranmm ng system produces prograns that
run on real data to effect useful
conput ati ons and that are reliable and
ef ficient enough for routine use. [BAR385, p.
1321]
This definition of automatic programm ng provides a tall order:
Bar st ow saw automati ¢ programm ng not as a prototyping
techni que, but as an approach to operational software

62

devel opnment. Barstow recorded the difficulty of achieving his
vi sion of an autonmatic programi ng system (APS): an APS requires
a great deal of dommin know edge (definitions, problemsolving
heuristics, and expectations about run-tinme characteristics of
the data). Wthout such know edge, a conputationally naive user
will have difficulty expressing herself to the APS. Barstow
foresaw a user witing an informal specification that would be
transforned by the APS through a series of steps to becone one
or nore prograns.

Probably the nost well known transformation systemreported
inthe literature is DRACO. [NEI GB9] (Al though Nei ghbors
descri bed DRACO as a hybrid between transformation and
conposition, DRACO perforns a serious of transfornmations between
multiple |l evels of abstractions.) DRACO consists of: 1) a
i brary of donmin-specific notations, each narrow in scope, but
not hierarchically organized, 2) a parser, 3) a pretty-printer,
4) generators, and 5) analyzers. The basic approach to
programm ng in DRACO is to use donain analysis to develop a
Domai n Language and then to parse the | anguage and input the
parse-trees to a code generator. The senmantics of a conponent
in one donain are defined by translation into conponents of
ot her domains; thus, the transformations conprise a hierarchy of
dormai n nodel s. Nei ghbors descri bes the execution nodel as well
under st ood, and he believes that nappi ng between domai n nodel s
and the execution nodel is straightforward. He identifies the
mai n problemw th the DRACO approach to be construction of
nodel s for application domains. In other words, who will
construct the know edge base needed to descri be the application?

A second techni cal approach to prototyping relies nore
directly on conposition fromreusabl e conponents. An exanpl e of
conposition, called MELD, is described by Kaiser and Garl an.
[KAl S89, GARL92] WMELD defines a nodul e interconnection | anguage
that can be used by an inplenentor to compose an environnent

63

froma collection of features, each of which inplenent sone
basic functionality. MELD assunes that a set of reusable
features have been encapsulated into a |ibrary. Conposition as
described with MELD can only be achi eved by professi onal
programers, but the potential to quickly construct prototypes
is intriguing. The initial problem of course, is construction
of a library of reusable features.

A third technical approach to prototyping provides a
simul ati on of system behavior. Lee and Sl uizer describe a
| anguage, called SXL, that all ows system behavior to be nodel ed
as a finite state machine, with pre- and post-conditions and
i nvariants included for each transition. [LEE91] SXL
descriptions, based on entity-relationship structures and
quantified, first-order logic, can by executed interactively to
test the behavior of a system An earlier simnulation approach
to prototyping was descri bed by Zave. [ZAVE84] (perati onal
simul ati ons can only be used to eval uate system behavi or.
| ssues such as the user interface, data requirenents, and
comuni cations interoperability cannot be eval uated through
operational sinulation. Also, prototyping via sinmulation is
best perforned by a trai ned anal yst or programmer.

A third way to view prototyping approaches is by life-cycle
nodel : throwaway, evolutionary, or operational. Each of these
is considered in turn.

Thr owaway prototypes are intended to verify some specific,
but Iimted aspect of systemrequirenents, such as conpl ex
behavi oral requirenents, user interface requirenents, or
requi renents for an innovative algorithm One advocate of
t hrowaway prototyping is Andriole. [ANDR92] Andriole proposes a
storyboard approach to prototype user interface requirenents.

St oryboard designers nust design every
single display of the systemin sequence,

wi th expl anati ons and descri ptions of each
di splay. Al nmethods and al gorithns shoul d

64

be expl ai ned and users should be able to get

a solid feel for how the systemw || work

just by thunbing through the pages. [ANDR92,

p. 11]
The availability of high-quality, inexpensive graphic displays
and graphi c design software make Andriol e s approach
particularly attractive because users can get a conputer
| ook-and-feel for the systeminterface w thout software
devel opment. Al so, nodifying the display screens becones a
qui ck, sinple job.

Anot her approach to quick, throwaway prototyping is under
I nvestigation at Oregon State University. [LEW89] Lew s and
his col | eagues are devel oping a prototyping systemthat maps
between a user interface and a set of actions. |n essence, the
system proposed by Lewi s, augnments graphical storyboards with a
set of actions that can switch between displays, pull down
menus, and performsone |imted processing fromscripts input by
a user. A user or progranmer can interactively design displays
and nmenus, can assign behavior to specific user actions, and can
create scripts defining operational functions. The tools under
construction to support this project appear prom sing as a quick
prot ot ypi ng net hod.

Evol uti onary prototyping, as opposed to throwaway
approaches, constructs an application systemincrenentally,
refining each increment through interactions with the users,
until an operationally conplete systemis constructed. The
prototyping efforts are neant as a lasting investnment. |n 1983,
Bal zer descri bed an approach to automatic programm ng that, in
ef fect, envisioned evolutionary progranm ng.

A concrete evolutionary software devel opnment system the
conput er ai ded prototyping system (CAPS), is described by Luqi
[LUQ 89] CAPS conprises three subsystens: a user interface, a
sof tware conmponents dat abase, and execution support. The user
i nterface subsystem provides two editors (one syntax-directed

65

and the other graphical) for defining specifications and user
i nterface screens, an expert systemto help users create
speci fications, and an assortnent of debuggi ng and browsing
tools. The software conponents dat abase subsystem provi des
tools to manage a repository of design descriptions and
translation rules. The execution support subsystem consists of
a translator and two schedulers (one static, one dynamc). The
user specifies an application using a Prototype System
Description Language (PSDL). The translator converts the
specification into an executable system draw ng on previously
defi ned conponents stored in the repository. The user may then
exerci se the prototype under control of a run-tinme schedul er.
CAPS is evolutionary because specifications witten, transl ated,
and tested can be retained in a database for use by prototypes
devel oped | ater.

Recently, Davis proposed conbini ng throwaway and
evol utionary prototyping to forma third approach that he nanes
operational prototyping. [DAVI92] COperational prototyping calls
for layering rapid prototypes on a solid, evolutionary base. In
Davis’ view, evolutionary prototypes are built with quality by
foll owi ng a conventional software devel opnent approach. In
fact, only confirned requirenents are inplenented in an
evol utionary prototype. Quick prototypes are inplenented to
expl ore poorly understood requirenents, then discarded. Davis
i magi nes building rapid prototypes within an architecture that
enbodi es an evol uti onary prototype. Davis believes that the
key to achi eving an operational nodel is to build evolutionary
prototypes within an architecture that accommobdat es extensive
change. Al though Davis does not describe such an architecture,
ot hers have.

Holt and Stanhope define an architecture to support
operational prototyping. [HOLT91] The architecture proposed by
Holt and Stanhope builds on a set of reusabl e objects, standard

66

interfaces to those objects, standard interfaces for
conmmuni cati ng between conputers, and a set of tools for
speci fyi ng, conposing, and executing applications. The reusable
nmegaobj ect s proposed by Holt and Stanhope differ fromthe snal
obj ects usually associated with object-oriented progranmm ng.
' Megaobj ects’ are | arge pieces of software
that contain carefully defined and
encapsul ated interfaces. During the 1990’ s,
applications that are well understood w |l
be captured as negaobjects. These wll
comuni cate by software buses, standardi zed
mechani sms for communication. The
principles and protocols for software buses
are currently being fornul ated, and
configuration systens for interconnecting

nmegaobj ects via a software bus w t hout
coding wll become common. [HOLT91]

Exanpl es of negaobjects already exist: X-Wndows libraries, the
Motif graphical user interface, TCP/IP software, SQ interface
libraries for relational database systens, and various standards
for interchanging fornatted data (e.g., SGW, ODA/ QDI F, |GCES,
and PDES). The concept of a software bus enabling negaobj ect
I nterconnection w thout programming is, however, a bit
nysterious. (Certainly, applications can be |linked to known
megaobj ects via link libraries and data can be exchanged between
| oosel y- coupl ed negaobj ects using standards for data
comuni cation and formatting, but a grander vision of a high
| evel conmposition | anguage for negaobjects is not yet feasible.)
The architecture proposed by Holt and Stanhope neets the
criteria set by Davis for operational prototyping: a solid
evol utionary base, anenable to extensive change. |In fact, Holt
and St anhope see their architecture as an operational nodel for
conputing based on increnental devel opnent by different classes
of devel opers. They envision three types of software devel opers
in the year 2000: end users (estimated to nunber 110 mllion) ,
application programmers (expected to nunber 1 mllion), and

67

tool smths and software engi neers (expected to nunber 100, 000).
The software engineers will build the megaobjects and work on
standards. The toolsmths will incorporate nmegaobjects into

hi gher | evel tools, such as paranmeter-driven form generators.
End users can enpl oy the generator tools to construct
applications. To support their vision, Holt and Stanhope cite
today’s user-driven software systens.

Most popul ar software tools ... available

today are configurable objects that are

paranet er-driven. These include

spreadsheets, databases, wordprocessors, and

mul ti-media systenms. All of these provide

the capability to enter data and

instructions on what to do with the data.

The data and instructions are then read by

t he execution engine, and executed to

produce the results desired by the user. |If

they don’t match the user’s needs, then the

user can change the specifications using an

intelligent, interactive graphical user

interface. [HOLT, p.53]
Holt and Stanhope go so far as to set goals for the next two
decades: by 2000, 50% of applications will be built with tools
and by 2010, 75% of applications will be so built.

To better gauge the practical possibilities of prototyping
as a devel opnent nethod (i.e., the evolutionary and operati onal
approaches), a review of progress nade toward know edge-assi st ed
progranmng is in order. 1In 1988, R ch and Waters reported on
an anbitious project to provide conputer assistance to
programmers. [RICH88] This Progranmer’s Apprentice is intended
to support all phases of software devel opnent fromrequirenents
anal ysis through software testing. The apprentice and
programmer are to conmuni cate through a body of shared know edge
about progranm ng techni ques.

Ri ch and Waters recogni zed that engineers think in chunked
concepts, that they labeled clichés, and that these concepts

usually related to one another. They decided that, given a

68

library of standard clichés and assistance from an expert

system, programs could be constructed by inspection, rather than
by reasoning from first principles. Defining and representing

the necessary clichés became a major focus of the Programmer's
Apprentice project. In effect, Rich and Waters were building a
model for the domain of computer programming.

The programmer describes a specification to the apprentice
through a formal notation, called a Plan Calculus. Using the
programmer-provided plan and a previously encoded knowledge
base, the Programmer's Apprentice can reason about the program
and can map the plan to an implementation. Rich and Waters
reported that the initial phase of the project concentrated on
generating an implementation from a programmer-created design.
Since that time, other apprentice tools (for example, a
Requirement's Apprentice and a debugging assistant) have been
produced to assist with other phases of the software development
process.

The Programmer's Apprentice project provided effective
tools that were difficult to use and performed poorly.

Certainly, the Programmer's Apprentice could assist a patient,
professional programmer, but providing help to a computer-naive
user was beyond its capabilities. Four years later, in 1992,
Marques and his colleagues at the Digital Equipment Corporation
(DEC) described a knowledge-assisted system that is intended for
easy programming by users.

In outline, the DEC system maps the features of a specific
application to appropriate abstract methods (i.e., control
structures stored in a knowledge base), elicits expertise
(including variations and exceptions), translates the expertise
into a form that the selected abstract control structure can
use, and then modifies and extends the application to cover
changes in the application requirements. To accomplish these
tasks, the DEC system comprises three tools: Spark, Burn, and

69

Firefighter. For a better understanding of the system each of
these tools in discussed in turn.

Spark, with help froma user, sifts through a hierarchy of
pre-defined control structures to select an appropriate approach
for the specific application at hand, and then, by consulting
with the user, custom zes the sel ected approach. Each conponent
in the hierarchy is characterized by a set of assunptions about
the type of inputs needed and the kind of outputs produced.
Where nultiple control structures appear to be appropriate,
Spark queries the user to reach sone concl usion on which
structure would be best. |f Spark cannot easily explain the
source of ambiguity to the user, then Spark sinply nakes sone
default assunptions and | eaves the problemfor Firefighter.
After conpleting its work, Spark calls Burn to further custom ze
t he sel ected sol ution.

Burn relies on a library of know edge acquisition tools,
one is associated with each pre-defined, control structure.

Each know edge acqui sition tool knows what know edge is required
for its associated control nechanism knows howto elicit the
needed know edge, and knows how to represent that know edge in a
form needed by the control mechanism For exanple, Burn m ght
ask the user for sone solutions to an exanple problemand for a
means of distinguishing between the solutions. After Burn
acquires the necessary know edge and configures pull-down nenus
for the application, Firefighter is dispatched.

No program generated by Burn will work well until it has
been used for a while, and is then nodified to account for
forgotten or unanticipated factors. Burn prograns are executed
under the control of Firefighter. Firefighter is an eval uator
that nonitors the performance of Burn prograns, detects poor
results, and then queries the user to diagnose and debug the
application. |If a detected error results fromm ssing or
i ncorrect know edge, then the know edge acquisition tool is

70

i nvoked. If the control mechanismis inappropriate, then Spark
is invoked to sel ect a new mechani sm

Firefighter enploys three rather sophisticated,
conpl enentary eval uati on techni ques to nonitor the performance
of Burn programs. The first two evaluation techniques rely on
specific code that is included in the control mechani sns, while
the third technique is built into Firefighter. The first
eval uation technique m ght be called: GOOD DOG BAD DOG Each
time the application executes, the user is queried about whether
t he performance was adequate. |f a BAD DOG response is
recei ved, then the know edge acquisition tool is invoked. The
second eval uation technique m ght be called: |I’VE BEEN A BAD
DOG. The application nonitors its own performance to detect
I nconsi stenci es and i nadequate results. Wen such problens are
detected, the user is infornmed and the know edge acqui sition
tool is invoked. This strategy is necessary because nost users
will not sit still during the initial devel opnent while Burn
elicits know edge about every type of case that the program
m ght face. |Instead, Burn asks for a mninumof information to
start, the application then nonitors its own perfornance, and
the user is required to provide additional know edge as needed
to resolve problens and i nprove the performance of the
application. The third evaluation strategy m ght be called: |
THINK YOU M GHT NEED A HORSE. Since Spark initially selects a
control nechani sm by naking strong assunpti ons on weak evi dence,
Firefighter nust conpare the application output to the
assunptions in order to detect incorrect control nechani smns.
When an error is suspected, Spark is invoked to suggest an
alternate control nechani sm

The goal of the DEC systemis to supply reusabl e nmechani sns
in a usable fashion. Marques and his coll eagues plan an
el aborate set of steps to evaluate progress toward their goal.
To assess usability they built nine applications thenselves, and

71

then presented themto users. (At the tine of the report, these
applications were being evaluated by the users.) |If the
applications appear useful, they plan to wite detailed

I nstructions for specific application tasks and then to ask

users with various levels of progranmng skill to build sone
prograns to solve the tasks. Then, they will ask domain
experts, who performa task well, but nmanually, to create a

full-scale programusing the tools. (At the tinme of the report,
one program had been built by a user; the job took eighteen
days.) As a final test, they will ask an experienced progranmer
to develop a full-scale, hand-coded programto solve a selected
application. They will then conpare the devel opnent tinme and
utility of the hand-coded programw th that of a user-devel oped
program

To denonstrate reusability, Marques and his coll eagues need
to show that new control mechani sms are not needed for each new
application. (This is critical because they admt that the cost
of buil ding nechani snms and their associated know edge
acquisition tools is too large if they need a special tool for
each new application.) Each of the nine prograns that they
devel oped used between two and six mechani sns; thirteen
mechani sms were used altogether. Seven applications used the
di al og manager, six used the select nechanism and five used the
cl assify mechani sm

Mar ques and his col |l eagues report that "[o]ne of [their]
bi ggest problens is getting people to 'make contact’ wth
Spark’s activity nodel. People buried in the details of 'rea
wor k’ have difficulty understandi ng generic, abstract nodels of
their tasks unless they helped to create the nodels." [MARQ2,
p. 29] In fact, the exanple given in their report, an exanple
of sifting through the hierarchy of problenfsolution nodels,
shows a bewi | dering array of possibilities. Mre discouraging
is that, upon selecting an incorrect nechanism the user can be

72

| ed through a tedious, repetitious cycle of progranmm ng by
exanple only to be sent back to the beginning to select a nore
appropriate nechanism The basi c approach appears to be
programm ng by educated guess, followed by trial and error
refinement.

Mar ques and his col | eagues have devel oped the npst
sophi sti cated, conputer-assisted software devel opnent tools
reported in the literature to date. The tools conpose and
refine an application froma set of reusable conponents. The
conposition nethod enpl oys know edge encoded within the tools,
coupl ed with know edge elicited froma domain expert. The
reusabl e conponents and the elicitation, generation, and
run-tinme tools define an architecture into which elicited
know edge can be encoded. Instead of relying on standards to
define an open architecture, the devel opers have constructed a
cl osed environment.

The system produced by Marques and his col |l eagues neet the
criteria for an automatic programm ng system as defined by
Barstow in 1985, with one exception. The reliability of
prograns produced by the DEC system cannot be assessed because a
given application programis never really conpleted. The
program continues to be refined, growing snmarter, and
presummably nore reliable, with use.

The di scussion of prototyping approaches presented in this
section illustrates that all prototyping involves reuse,
soneti mes of conponents, sonetinmes of know edge encoded in a
know edge base, a transformation program or a sinmulator, but
nost often of a conbination of conponents and know edge.
Successful operational and evol utionary prototypi ng approaches
rely mainly on conposition of |arge, reusable conponents,
coupl ed with know edge elicited from human programmers or users.
The form of reusable conponents varies from open systens
conposed of standard software functions that are accessible via

73

standard interfaces to closed systens of conponents that are
integrated into an expert system that are accessible via
heuristic classification strategies, and that can be nodified
through an interactive dial og between a user and an expert
system In the case of open prototyping systens, nethods for
eliciting and representing conposition rules are not well
understood nor widely available. |In the case of know edge-based
prototypi ng systens, nmethods for eliciting and representing
know edge, for selecting a possible solution, and for nodifying
the selected solution to neet specific application details are
all integrated into the prototyping system O course, the cost
of building such closed prototype systens is quite high -- all
the reusable solutions, elicitation software, and anal ysis and
classification algorithns nust be constructed before prototypes
can be built. Even when not intended to evolve into operational
sof tware systens, prototyping systenms can provide an
architecture, or context, into which reusabl e conponents and
know edge can be fitted and eval uat ed.

74

VI . Concl usi ons

Reuse in the software industry, as with any engi neering
di scipline, holds the key to increased productivity anong
practitioners and to i nproved quality anong software products.

Al t hough the concept of software reuse was identified as early
as 1969, the progress achieved within the software industry,
whil e significant fromsonme points of view, disappoints nopst
reuse advocates. Sone may argue that revised econom c

I ncentives and solid nmanagenent commtnent will enhance software
reuse practice, but this paper has described a long list of
hard, technical barriers that inpede software reuse. |In fact,
t he paper has reported a historical perspective that shows
software reuse rates peaking at about 50%in 1984, and then
dwi ndling to about 33% by 1989. W rse, the conponents being
reused in 1989 were both smaller and sinpler than those reused
in 1984. Wat can account for this trend?

Much of the early progress in reuse relied upon a well
under st ood applicati on domain (business information systens) and
a specific, well defined programm ng architecture (COBOL
prograns on mai nframe conputers). Advances in technol ogy, such
as new program ng | anguages (Ada and C), new programm ng
par adi gns (obj ect oriented progranm ng and graphi cal user
interfaces), and fast, cheap, desktop conputers, have washed
away progress nade in reuse anong COBCL busi ness applications.
Reuse principles could not be generalized and applied easily in
new envi ronnents. To nove software reuse back to and beyond the
50% peak realized in 1984, new approaches, draw ng on the
successful early experiences, are needed.

The present paper has identified three keys to successf ul
software reuse: 1) a well understood application donain, 2)
| ar ge- grai ned reusabl e conponents, and 3) a definite system

75

nodel or architecture into which reusabl e conponents can be
fitted. The systemarchitecture should be general enough so
t hat reusabl e conponents are not necessarily limted to those
witten in a specific, programm ng | anguage.

The first requirenent for successful software reuse, a well
under st ood donmi n, can be approached t hrough a domai n anal ysis
and nodel i ng process that incorporates know edge-based tool s and
techni ques. This paper proposed integrating domain anal ysis
into the requirenents engineering process. Further, the paper
showed how such integration could be achi eved by proposing a
speci fic mappi ng between a domai n anal ysi s process described by
Prieto-Diaz and a requirenments engi neering process defined in a
sem nar on requirenments engi neering held at George Mason
University in the fall of 1992. The paper went on to identify
several tools and techniques that could be used to aid the
i ntegrated donmi n anal ysis and requi rements engi neering
processes. These tools and techniques mainly supported the
elicitation, acquisition, and representati on of know edge.

The second requirenment for productive software reuse,
| ar ge- grai ned reusabl e conponents, is the subject of current
research. Several object oriented paradigns are noving toward
t he concept of frameworks or ensenbles to represent a collection
of related classes that support a |arge, reusable concept. 1In
fact, collections of classes are used to inplenment sonme of the
key reusabl e conponents in the industry today; these are the so
cal |l ed "negaobj ects" such as X-Wndows, the Mtif graphical user
interface, TCP/IP comuni cations software, and SQ. interface
libraries. The trend toward | arger, reusable conponents is al so
evident in automated progranm ng systens, such as the user
progranmm ng system devel oped by researchers at the Digital
Equi pment Corporation. |In DEC s approach, reusable control
mechani sms are constructed and then inserted into a library
wher e searches, conducted by a user, for a control structure to

76

support specific application requirenents are assisted by an
expert system Once a control structure is selected, a related
elicitation program acquires the necessary know edge to sol ve
the specific application problemand then represents that

knowl edge in a formthat can be used by the pre-defined control
structure. During use, the application programcan be refined
wi th additional know edge, even to the point of selecting an
alternate control structure.

These two approaches, one called an open architecture and
the other a closed expert system both address reuse at a | arge
grain size. Each approach has advantages and di sadvant ages, as
outlined in the paper, that go to the heart of the relationship
bet ween prototypi ng and know edge acqui sition and
representation. The open architecture can nore easily accept
conmponent s devel oped by different approaches and using different
| anguages; however, the transformation between domai n know edge
is made by a human programrer. The cl osed expert system can use
pre-defined know edge, guided by an interaction with a donain
expert, to produce a solution to a specific application problem
however, the pre-defined know edge nust already be encoded into
the system and encoded in a formthat neets the requirenments of
the expert system This pre-encoding of know edge i s expensive,
and the nunber of sources that can encode the know edge is
probably rather small.

This dil emmma, open versus closed architecture, describes
the problem faced by the industry when the third prerequisite
for successful software reuse, a well defined system
architecture, is considered. There can be no doubt that a
definite architecture is necessary for reuse: consider the
success of UN X, MSDCS, and, maybe, M5 Wndows. These are each
a specific architecture that enabl es reusabl e software; but such
sof tware cannot be easily noved fromone of these architectures
to the others. WII the industry have winners and | osers? WII

77

one architecture predom nant and others fade? Such is our
hi story.

Thi s paper has advocated that sone form of prototyping be
used to eval uate reusabl e conponents, and al so that prototyping
can be a source of previously eval uated reusabl e conponents;
however, the paper does not come down on the side of a specific
architecture, or even on the side of a closed or open
architecture. Should an open architecture be used, the problem
of choosing particul ar standards nust be addressed. (This is a
probl em wort hy of separate consideration in another study.)

Open architectures also provide little help with sone reuse
probl enms such as classification, |ocation, and retrieval.

Cl osed, expert system architectures can hel p solve such
problems. O course, closed architectures may suffer fromthe
reuse popul ati on probl em

More research is required concerning the probl em of
bridging the conceptual gap between domai n know edge
representations and prototype representations. In fact, the
forms of representing know edge (Il ogic programm ng, production
rul es, frames, and semantic networks) are rather limted no
matter to what use the knowl edge will be put. For exanple,
al t hough expert systens can elicit know edge from domai n experts
and then encode that know edge into a know edge base suitable to
support reasoning, no nmeans presently exists to translate
textual requirenents statenents, gathered from users by
anal ysts, into a formsuitable for storing in a know edge base
or for conparing agai nst a knowl edge base. Until further
progress i s made on these issues, know edge-based systens can at
best provide a limted form of autonated assistance to human
anal ysts.

78

VI1. References and Bibliography

The following citations were used in the paper as
ref erences or as general background material. To aid
understanding, the citations are divided into four categories:
1) Ceneral Software and Requirenents Engi neering, 2) Reuse, 3)
Domai n Knowl edge Acqui sition, Representation, and Analysis, and
4) Prototyping and Automatic Programming. Wthin each category
the citations are arranged al phabetically, using the citation
code as a key. Each citation code, enclosed in square brackets
[], is conposed of the first four characters of the first
author’ s | ast nane (except where the author’s last nanme is
shorter than four letters) and the last two digits of the year
in which the reference was published. Were the citation
encodes to nore than one identical value a single |owercase
al phabetic character is used to distinguish the synonyns.

General Software and Requirenents Engineering

[BOEH87] B. Boehm "Inproving Software Productivity", COWUTER,
Sept enber 1987, pp. 43-75.

[BROOB7] F. Brooks, "No Silver Bullet, Essence and Accidents of
Sof tware Engi neering", COWUTER April 1987, pp. 10-19.

[CURT88] B. Curits, et al., "A Field Study of the Software
Desi gn Process for Large Systens", Conmunications of
the ACM Novenber 1988, pp. 1268-1286.

[DAVI 90] A. Davis, Software Requirenents Anal ysis and
Specification, Prentice Hall, 1990, 516 pages.

[FREEBO] P. Freeman, "Requirenents Anal ysis and Specification:
The First Step", Advances in Conputer Technol ogy,
Anerican Soci ety of Mechani cal Engineers, 1980, pp.

79- 85.
[PALMB2] J. Palnmer and N. Fields, "An Integrated Environnent
for Requi renents Engi neering", |EEE Software, NMay 1992,
pp. 80- 85.

79

[RAMASE]

[RAVE92]

[RZEP85]

[SAGE90]

[YADASS]

Reuse

[Bl GG87]

1987,

[Bl GG89]

[BURT87]

C. Ramanoorthy, et al.,
| EEE Transacti ons on Software Engi neeri ng,
pp. 769-783.

"Programm ng in the Large",
July 1986,

B. Ranesh and V. Dhar, "Supporting Systens Devel opnent
by Capturing Deliberations During Requirenents

Engi neering", | EEE Transactions on Software

Engi neeri ng, June 1992, pp. 498-510.

W Rzepka and Y. Chno,
Envi ronnent: Software Tools for
COWUTER, April 1985, pp. 9-12.

"Requi rment s Engi neering

Model i ng User Needs",

A. Sage and J.
John Wley and Sons,

Pal mer, Software Systens Engi neeri ng,
1990, 511 pages.

S. Yadar, et al., "Conparison of Analysis Techni ques
for Informati on Requirenments Determ nation”,
Communi cat ons of the ACM Septenber 1988, pp.

1090- 1097.

T. Biggerstaff and C. Richter, "Reusability FrameworKk,

Assessnent, and Directions", | EEE Software, Narch

pp. 41-49.
Mai nt enance and

T. Biggerstaff, "Design Recovery for

Reuse", COWPUTER, July 1989, pp. 36-49.

B. Burton, et al., "The Reusable Software Library",

| EEE Software, July 1987, pp. 25-32.

80

[CALDO1]

1991,

[CAVAS9]

[CURT89]

[COX92]

[DI SA91]

[GRI S91]

G Caldiera and V. Basili, "ldentifying and Qualifying
Reusabl e Software Conponents", COWUTER February

pp. 61-69.

M Cavaliere, "Reusable Code at the Hartford | nsurance
G oup”, in Software Reusability Volume Il Applications

and Experience, ACM Press, 1989, pp. 131-141.

B. Curtis, "Cognitive Issues in Reusing Software", in
Software Reusability Volume Il Applications and

Experi ence, ACM Press, 1989, pp. 269-287.

B. Cox, The Econom cs of Software Reuse, a |ecture
given in INFT 821 at George Mason University on Cct.
13, 1992.

Def ense I nformati on Systenms Agency, Defense Software
Repsi tory System CGeneral [|nformation, available from
the DoD Center for Software Reuse Operations, 500 N

Washi ngton St., Suite 101, Falls Church, VA 22046.

M Giss, et al., "The Econonics of Software Reuse",
OOPSLA " 91 Conference Proceedings, Cctober 1991, pp.

264-270.

81

[HOROB4] E. Horowitz and J. Munson, "An Expansive View of
Reusabl e Software", [|EEE Transactions on Software
Engi neeri ng, Septenber 1984, pp. 477-487.

[1SCO88] N. Iscoe, "Domain-Specific Reuse: An Object-Oiented
and Know edge- Based Approach", an updated version of

an article in the Proceedings of the Wrkshop on Software
Reuse held in Cctober 1987, pp. 299-308.

[JACOO1] |I. Jacobson and F. Lindstrom "Re-engineering of Ad
Systens to an (bject Oriented Architecture, OOPSLA '91
Conf erence Proceedi ngs, Cctober 1991, pp. 340-350.

[JONEB4] T. Jones, "Reusability in Progranm ng: A Survey of
t he State of the Art", |EEE Transactions on Software
Engi neeri ng, Septenber 1984, pp. 488-493.

[KERN84] B. Kernighan, "The Unix System and Software
Reusabi lity", | EEE Transactions on Software
Engi neeri ng, Septenber 1984, pp. 513-518.

[LANGB4] R Langergan and C. Grasso, "Software Engineering with
Reusabl e Designs and Code", | EEE Transactions on
Sof t wvar e Engi neeri ng, Septenber 1984, pp. 498-501.

[LEDB85] L. Ledbetter and B. Cox, "Software-1Cs", BYTE, June
1985, pp. 28-36.

[LENZ87] M Lenz, et al., "Software Reuse Through Buil di ng
Bl ocks", | EEE Software, July 1987, pp. 34-42.

[LEW91l] J. Lewis, et al., "An Enpirical Study of the Object
Oiented Paradi gm and Software Reuse", OOPSLA ’'91
Conf erence Proceedi ngs, Cctober 1991, pp. 264-270.

[MATS84] Y. Matsunoto, "Sonme Experiences in Pronoting Reusable
Software Presentation in H gher Abstraction Levels",
| EEE Transacti ons on Software Engi neering, Septenber
1984, pp. 502-512.

[MEYEB7] B. Meyer, "Reusability: The Case for Object Oriented
Design", | EEE Software, March 1987, pp. 50-64.

[NOVA92] G Novak, et al., "Negotiated Interfaces for Software
Reuse", [EEE Transactions on Software Engi neering,
July 1992, pp. 646-652.

82

[PRI E87]

[Rl CE89]

[SELB8Y]

[STANS4]

[VOLP89]

[W RF90]

[WOOD87]

R Pietro-Diaz and P. Freeman, "d assifying Software
for Reusability", [EEE Software, January 1987, pp.
6- 16.

J. Rice and H Schwetrman, "Interface Issues in a
Software Parts Technol ogy”,in Software Reusability
Vol ume | Concepts and Mbdel s, ACM Press, 1989, pp.
125- 1309.

R Sel by, "Quantitative Studies of Software Reuse", in
Software Reusability Volunme Il Applications and
Experi ence, ACM Press, 1989, pp. 213-233.

T. Standish, "An Essay on Software Reuse", [|EEE
Transactions on Software Engi neering, Septenber 1984,
pp. 494-497.

D. Vol pano and R Kieburtz, "The Tenpl ates Approach to
Sof tware Reuse", in Software Reusability Vol une |
Concepts and Mdel s, ACM Press, 1989, pp. 247-255.

R Wrfs-Brock and R Johnson, "Surveying Current
Research in Object-Oiented Design", Conmunications of
the ACM Septenber 1990, pp. 104-102.

S. Wodfield, et al., "Can Programmers Reuse
Sof tware?", | EEE Software, July 1987, pp. 52-59.

Donai n Knowl edge Acqui siton, Representation, and Anal ysis

[ARANSO]

[BOOS86]

[BROOB3]

[BUCH78]

Artificial

G Arango, "Domain Analysis - FromArt Form To
Engi neering Discipline", ACM 1989, pp. 152-159.

J. Boose, "ETS: A Systemfor the Transfer of Human
Expertise", in Know edge Based Probl em Sol vi ng,
Prentice Hall, 1986, pp. 68-111.

R Brooks, "Towards a Theory of the Conprehension of
Comput er Prograns"”, |[nternational Journal of
Man- Machi ne St udi es, 1983, pp. 543-554.

B. Buchanan and E. Fei genbaum "DENDRAL and

META- DENDRAL: Their Applications D nension”,
Intelligence, Novenber 1978.

83

[CHOR9O0]

D. Chorafas, Know edge Engi neeri ng, Van Nostrand
Rei nhol d, 1990, 380 pages.

[CLAN86] W dCancey, "Heuristic Classification", in Know edge
Based Probl em Sol ving, Prentice Hall, 1986, pp. 1-67.

[COOK87] N. Cooke and J. McDonal d, "The Application of
Psychol ogi cal Scaling Techni ques to Know edge
Elicitation for Know edge- based Systens",

I nt er nat i onal Jour nal of Man-Machi ne Studies, vol. 26,

1987, pp. 530- 550.

[DAVI 82] R Davis and D. Lenat, Know edge-Based Systens in
Artificial Intelligence, McGaw H I, 1982.

[EEPE92] Ee-Peng L. and V. Cherkassky, "Semantic Networks and
Associ ative Dat abases", | EEE Expert, August 1992, pp.
31-40.

[FICK87] S. Fickas, "Autonmating the Requirenents Anal ysis
Process: An Exanpl e", paper presented at sone | EEE
Conference held in 1987, pp. 58-67.

[FICK92] S. Fickas and R Helm "Know edge Representation and
Reasoning in the Design of Conposite Systens", |EEE
Transactions on Software Engi neering, June 1992, pp.
470- 482.

[FIKEB5] R Fikes and T. Kehler, "The Role of Frame-Based
Representation in Reasoni ng", Conmunications of the
ACM Septenber 1985, pp. 904-920.

[GENE85] M Genesereth and M G nsberg, "Logic Programm ng”
Conmuni cati ons of the ACM Septenber 1985, pp.

933-941.

[HASS83] N. Hass and G Hendrix, "Learning by Being Tol d:
Acqui ri ng Know edge for Informati on Managenent”, in
Machi ne Learning: An Artificial Intelligence Approach,
Ti oga Press, 1983.

[HAYES5] F. Hayes-Roth, "Rul e-Based Systens", Conmunications of
the ACM Septenber 1985, pp. 921-932.

[KELLS5] G Kelly, The Psychol ogy of Personal Constructs,
Nor t on, 1955.

[KITT87] C. Kitto and J. Boose, "Choosing Know edge Acquisition

Strategies for Application Tasks", in Proceedi ngs

84

West ern Conference On Expert Systens, |EEE Conputer
Soci ety, June 1987, pp. 96-103.

[KONT88] J. Kontos and J. Cavouras, "Know edge Acquisition from
Techni cal Texts Using Attribute Gammars”, The

Conput er Journal, June 1988, pp. 525-530.

[MART90] J. Martin and W Tsai, "N-Fold Inspection: A
Requi renents Anal ysis Techni que", Conmuni cati ons of

t he ACM February 1990, pp. 225-232.

[MCH80] R Mchalski , "Pattern Recognition as Rul e-guided
I nductive Inference", [EEE Transactions on Pattern
Anal ysi s and Machi ne Intelligence, no. 4, 1980.

[MUSEB9] M Musen, Automated Generation of Mdel - Based

Know edge Acqui sition Tool s, Mrgan Kaufnman

Publ i shers, 1989, 293 pages.

[NAGY92] G Nagy, et al., "A Prototype Docunent |mage Anal ysis
System for Technical Journals", COWUTER July 1992,
pp. 10-24.

[OBAN87] R O Bannon, "An Intelligent Aid to Assist Know edge
Engi neers with Interviewi ng Experts", in Proceedi ngs
West ern Conference On Expert Systens, |EEE Conput er
Soci ety, June 1987, pp. 31-43.

[PRIEB7a] R Prieto-Di az, "Domain Analysis For Reusability",
| EEE, 1987, pp. 23-29.

[RICH92] C. R ch and Y. Feldman, "Seven Layers of Know edge
Representati on and Reasoning in Support of Software
Devel opnent", | EEE Transactions on Software
Engi neeri ng, June 1992, pp. 451-469.

[RINE91] D. Rine, "A Formal Approach to Software Domain

Model i ng of Requirenents Specification Using a Basis as

Primtive Domain Types", unpublished manuscri pt,
Oct ober 1991, 28 pages.
[SHEMB7] |. Shener, "Systens Analysis: A System c Anal ysis of
a Conceptual Model ", Conmmuni cations of the ACM June

1987, pp. 506-512.

85

Pr ot ot ypi ng and Automatic Progranmm ng

[ANDRO92] S. Andriole, Rapid Application Prototyping - The
St oryboard Approach to User Requirenents Anal ysis, QED

Techni cal Publishing Goup, 1992, 336 pages.

[BALZ83] R Bal zer, et al., "Software Technol ogy in the 1990’ s:
Usi ng a New Paradi gnt', COWUTER, Novenber 1983, pp

39-45.

[BARS85] D. Barstow, "Domain-Specific Automatic Progranm ng",
| EEE Transacti ons on Software Engi neering, Novenber

1985, pp. 1321-1336.

[DAVI 92] A. Davis, "Operational Prototyping: A New Devel opnent

Approach", | EEE Software, Septenber 1992, pp. 70-78.

[GARL92] D. Garlan, et al., "Using Tool Abstraction to Conpose

Systens", COWUTER June 1992, pp. 30-38.

[HOLT91] R Holt, et al., bject Oiented Conputing: Looking
Ahead to the Year 2000, |nformation Technol ogy
Resear ch Center, TR 9101, University of Toronto, Apri

1991, 123 pages.

86

[KAl S89]

[LEE91]

[LEW 89]

[LOAR9Z]

[LUQ 89]

[MARQDZ]

G Kaiser and D. Garlan, "Synthesizing Progranmm ng
Envi ronnents From Reusabl e Features", in Software
Reusability Volume Il Applications and Experience, ACM

Press, 1989, pp. 35-55.

S. Lee and S. Sluizer, "An Executabl e Language for
Model i ng Si npl e Behavior", | EEE Transacti ons on

Soft war e Engi neering, June 1991, pp. 527-543.

T. Lewis, et al., "Prototypes from Standard User

I nterface Managenent Systens", COWUTER, May 1989, pp

51-60.

M Lowy, "Software Engineering in the Twenty-First

Century", Al Magazine, Fall 1992, pp. 71-87.

Lugi, "Software Evol ution Through Rapid Prototyping",

COVMPUTER, May 1989, pp. 13- 25.

D. Marques, et al., "Easy Programm ng", |EEE Expert

June 1992, pp. 16-29.

87

[NEI G89] J. Neighbors, "DRACO A Method for Engineering

Reusabl e Sof tware Systens", in Software Reusability Vol une
/ Concepts and Mdel s, ACM Press, 1989, pp.
295- 319.

[RICH88] C. R ch and R Waters, "The Programmer’s Apprentice: A
Research Overiview', COWUTER Novenber 1988, pp.

10- 25.

[RICH88Ba] C. Rich and R Waters, "Automatic Programm ng: Mths

and Prospects", COWUTER August 1988, pp. 40-51.

[TANI89] M Tanik and R Yeh, "Rapid Prototyping in Software

Devel opement”, COWPUTER, May 1989, pp. 9-13.

[ZAVEB4] P. Zave, "The Qperational Versus the Conventi onal

Approach to Software Devel opnent,"” Conmuni cati ons of

the ACM February 1984, pp. 104-118.

88

